Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping a Brain Atlas

08.09.2010
TAU investigates brain connections to understand disorders of the mind

Uncovering the secrets of the brain requires an intense network of collaborative research. Building on a tool that was co-developed in his laboratory and described in a recent issue of Brain, Dr. Yaniv Assaf of Tel Aviv University's Department of Neurobiology is collaborating with an international team of scientists to understand how different parts of the human brain "connect" — and to turn this information into a "brain atlas."

Brain researchers already know that autism and schizophrenia are not localized disorders — there is no one place in the brain they can be found. That's why a brain atlas will be an invaluable resource for understanding how parts of our brain connect to other parts within, leading to a deeper understanding of these diseases.

"It's currently impossible for clinicians to 'see' subtle disorders in the brain that might cause a life-threatening, devastating disability," says Dr. Assaf, whose most recent research was done in collaboration with the U.S. National Institutes of Health. Developmental disorders like autism are believed to be a function of abnormal connections among different regions within the brain — like wires between telephone poles. In his research, Dr. Assaf looks at clusters of brain wiring, or axons, to help scientists produce a better working map of the brain for future research.

... more about:
»Atlas »Brain »MRI »brain cell »human brain

Mapping biomarkers

Axons connect brain cells. About one micron (one millionth of a meter) in diameter, these tiny axons transfer information to each other and to different parts of the brain. To date there has been no non-invasive imaging technique that can let scientists "see" such features in the brain in a living person — partly because the axons are so small, and partly because of the delicate nature of the brain.

Dr. Assaf's tool can look at larger groups of multiple axons and collect information from the group itself, information which measures the velocity and flow of information within the brain. Using a standard MRI available in most major hospitals, Dr. Assaf's tool, called AxCaliber, provides a way to recognize groups of abnormal axon clusters. Systematically arranged into an atlas, these groups could serve as biomarkers for the early diagnosis, treatment and monitoring of brain disorders.

Putting his head into his research

"Currently, we can map the healthy human brain past the age of puberty. But once we will assemble this atlas, we could do this scan before puberty — and maybe even in utero — to determine who's at risk for disorders like schizophrenia, so that an early intervention therapy can be applied” says Dr. Assaf, who is working on the brain atlas with a pan-European consortium of brain scientists through a 12-laboratory network called CONNECT. The consortium, funded by the European Union, includes Dr. Assaf, his Tel Aviv University colleague Prof. Yoram Cohen, and partners in the United Kingdom, France, Germany, Denmark, Italy and Switzerland. Each of the teams in the consortium is offering its individual expertise to better understand connections in the brain and how they change over time. Their goal is to be better able to predict the onset, then more effectively treat, brain-related diseases.

And because Dr. Assaf is currently mapping the anatomy of a healthy brain's connections, he doesn't mind offering up his own head, which he inserts into a Tel Aviv University-owned MRI at a local hospital, for study.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Atlas Brain MRI brain cell human brain

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>