Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Map of Herpes Virus Protein Suggests a New Drug Therapy

07.07.2010
The mechanism by which a herpes virus invades cells has remained a mystery to scientists seeking to thwart this family of viruses.

New research funded by the National Institutes of Health and published online in advance of print in Nature Structural & Molecular Biology reveals the unusual structure of the protein complex that allows a herpes virus to invade cells. This detailed map of a key piece of the herpes virus “cell-entry machinery” gives scientists a new target for antiviral drugs.

“Most viruses need cell-entry proteins called fusogens in order to invade cells. We have known that the herpes virus fusogen does not act alone and that a complex of two other viral cell-entry proteins is always required. We expected that this complex was also a fusogen, but after determining the structure of this key protein complex, we found that it does not resemble other known fusogens,” said senior author Ekaterina Heldwein, PhD, assistant professor in the molecular biology and microbiology department at Tufts University School of Medicine.

“This unexpected result leads us to believe that this protein complex is not a fusogen itself but that it regulates the fusogen. We also found that certain antibodies interfere with the ability of this protein complex to bind to the fusogen, evidence that antiviral drugs that target this interaction could prevent viral infection,” Heldwein continued. Heldwein is also a member of the biochemistry and molecular microbiology program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts.

“Katya Heldwein’s work has resulted in a map of the protein complex needed to trigger herpes virus infection. The NIH Director's New Innovator Awards are designed to support such breakthroughs. This research not only adds to what we know about how herpes viruses infect mammalian cells, but also sets the stage for new therapeutics that restrict herpes virus’s access to the cell,” said Jeremy M. Berg, PhD, director of the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health.

“We hope that determining the structure of this essential piece of the herpes virus cell-entry machinery will help us answer some of the many questions about how herpes virus initiates infection. Knowing the structures of cell-entry proteins will help us find the best strategy for interfering with this pervasive family of viruses,” said first author Tirumala K. Chowdary, PhD, a postdoctoral associate in the department of molecular biology and microbiology at TUSM and member of Heldwein’s lab.

Currently, there is no cure for herpes viruses. Upon infection, the viruses remain in the body for life and can stay inactive for long periods of time. When active, however, different herpes viruses can cause cold sores, blindness, encephalitis, or cancers. More than half of Americans are infected with herpes simplex virus type 1 (HSV-1), which causes cold sores, by the time they reach their 20s. Currently, about one in six Americans is infected with herpes simplex virus type 2 (HSV-2), the virus responsible for genital herpes. Complications of HSV-2, a sexually-transmitted disease, include recurrent painful genital sores, psychological distress, and, if transmitted from mother to child, potentially fatal infections in newborn infants.

Heldwein teamed up with colleagues at University of Pennsylvania and used x-ray crystallography along with cell microscopy techniques to study the structure and function of this cell-entry protein complex in HSV-2. Heldwein is currently developing a molecular movie that illustrates how herpes virus enters the cell.

Additional authors are Tina Cairns, PhD, a research specialist; Doina Atanasiu, a research associate; and Gary Cohen, PhD, professor and chair, all in the department of microbiology at the University of Pennsylvania School of Dental Medicine; and Roselyn Eisenberg, PhD, professor in the department of microbiology at the University of Pennsylvania School of Veterinary Medicine.

This work was funded by the Office of the Director of the National Institutes of Health, through a New Innovator Award in 2007 to Ekaterina Heldwein. The New Innovator Awards, part of the NIH Roadmap for Medical Research initiative, are awarded to support early-career scientists who take innovative – and potentially transformative – approaches to major challenges in biomedical research. The work was also funded by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, and the Pew Scholar Program in Biomedical Sciences.

Chowdary TK, Cairns TM, Atanasiu D, Cohen GH, Eisenberg RJ, Heldwein EE. Nature Structural & Molecular Biology. 2010. “Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL.” Published online July 4, 2010, doi: 10.1038/nsmb.1837

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical science.

Siobhan Gallagher | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Desert ants cannot be fooled
23.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water cooling for the Earth's crust

23.11.2017 | Earth Sciences

Nano-watch has steady hands

23.11.2017 | Physics and Astronomy

Batteries with better performance and improved safety

23.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>