Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Map of Herpes Virus Protein Suggests a New Drug Therapy

07.07.2010
The mechanism by which a herpes virus invades cells has remained a mystery to scientists seeking to thwart this family of viruses.

New research funded by the National Institutes of Health and published online in advance of print in Nature Structural & Molecular Biology reveals the unusual structure of the protein complex that allows a herpes virus to invade cells. This detailed map of a key piece of the herpes virus “cell-entry machinery” gives scientists a new target for antiviral drugs.

“Most viruses need cell-entry proteins called fusogens in order to invade cells. We have known that the herpes virus fusogen does not act alone and that a complex of two other viral cell-entry proteins is always required. We expected that this complex was also a fusogen, but after determining the structure of this key protein complex, we found that it does not resemble other known fusogens,” said senior author Ekaterina Heldwein, PhD, assistant professor in the molecular biology and microbiology department at Tufts University School of Medicine.

“This unexpected result leads us to believe that this protein complex is not a fusogen itself but that it regulates the fusogen. We also found that certain antibodies interfere with the ability of this protein complex to bind to the fusogen, evidence that antiviral drugs that target this interaction could prevent viral infection,” Heldwein continued. Heldwein is also a member of the biochemistry and molecular microbiology program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts.

“Katya Heldwein’s work has resulted in a map of the protein complex needed to trigger herpes virus infection. The NIH Director's New Innovator Awards are designed to support such breakthroughs. This research not only adds to what we know about how herpes viruses infect mammalian cells, but also sets the stage for new therapeutics that restrict herpes virus’s access to the cell,” said Jeremy M. Berg, PhD, director of the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health.

“We hope that determining the structure of this essential piece of the herpes virus cell-entry machinery will help us answer some of the many questions about how herpes virus initiates infection. Knowing the structures of cell-entry proteins will help us find the best strategy for interfering with this pervasive family of viruses,” said first author Tirumala K. Chowdary, PhD, a postdoctoral associate in the department of molecular biology and microbiology at TUSM and member of Heldwein’s lab.

Currently, there is no cure for herpes viruses. Upon infection, the viruses remain in the body for life and can stay inactive for long periods of time. When active, however, different herpes viruses can cause cold sores, blindness, encephalitis, or cancers. More than half of Americans are infected with herpes simplex virus type 1 (HSV-1), which causes cold sores, by the time they reach their 20s. Currently, about one in six Americans is infected with herpes simplex virus type 2 (HSV-2), the virus responsible for genital herpes. Complications of HSV-2, a sexually-transmitted disease, include recurrent painful genital sores, psychological distress, and, if transmitted from mother to child, potentially fatal infections in newborn infants.

Heldwein teamed up with colleagues at University of Pennsylvania and used x-ray crystallography along with cell microscopy techniques to study the structure and function of this cell-entry protein complex in HSV-2. Heldwein is currently developing a molecular movie that illustrates how herpes virus enters the cell.

Additional authors are Tina Cairns, PhD, a research specialist; Doina Atanasiu, a research associate; and Gary Cohen, PhD, professor and chair, all in the department of microbiology at the University of Pennsylvania School of Dental Medicine; and Roselyn Eisenberg, PhD, professor in the department of microbiology at the University of Pennsylvania School of Veterinary Medicine.

This work was funded by the Office of the Director of the National Institutes of Health, through a New Innovator Award in 2007 to Ekaterina Heldwein. The New Innovator Awards, part of the NIH Roadmap for Medical Research initiative, are awarded to support early-career scientists who take innovative – and potentially transformative – approaches to major challenges in biomedical research. The work was also funded by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, and the Pew Scholar Program in Biomedical Sciences.

Chowdary TK, Cairns TM, Atanasiu D, Cohen GH, Eisenberg RJ, Heldwein EE. Nature Structural & Molecular Biology. 2010. “Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL.” Published online July 4, 2010, doi: 10.1038/nsmb.1837

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical science.

Siobhan Gallagher | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>