Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulation of a specific neural circuit buried in complicated brain networks in primates

18.06.2012
Newly clarified function of 'indirect pathways' from brain to spinal motor neurons, controlling dexterous hand movements by newly developed 'the double viral vector transfection technique'

The collaborative research team led by Professor Tadashi ISA, Project Assistant Professor Masaharu KINOSHITA from The National Institute for Physiological Sciences, The National Institutes of Natural Sciences and Fukushima Medical University and Kyoto University, developed "the double viral vector transfection technique" which can deliver genes to a specific neural circuit by combining two new kinds of gene transfer vectors.

With this method, they found that "indirect pathways", which were suspected to have been left behind when the direct connection from the brain to motor neurons (which control muscles) was established in the course of evolution, actually plays an important role in the highly developed dexterous hand movements. This study was supported by the Strategic Research Program for Brain Sciences by the MEXT of Japan. This research result will be published in Nature (London) (June 17th, advance online publication).

It is said that the higher primates including human beings accomplished explosive evolution by having acquired the ability to move hands skillfully. It has been thought that this ability to move individual fingers is a result of the evolution of the direct connection from the cerebrocortical motor area to motor neurons of the spinal cord which control the muscles. On the other hand, in lower animals with clumsy hands, such as cats or rats, the cortical motor area is connected to the motor neurons, only through interneurons of the spinal cord. Such "indirect pathway"remains in us, primates, without us fully understanding its functions. Is this "phylogenetically old circuit" still in operation? Or maybe suppressed since it is obstructive? The conclusion was not attached to this argument.

The collaborative research team led by Professor Tadashi ISA, Project Assistant Professor Masaharu KINOSHITA from The National Institute for Physiological Sciences, The National Institutes of Natural Sciences and Fukushima Medical University and Kyoto University developed "the double viral vector transfection technique"which can deliver genes to a specific neural circuit by combining two new kinds of gene transfer vectors.

With this method, they succeeded in the selective and reversible suppression of the propriospinal neurons (spinal interneurons mediating the indirect connection from cortical motor area to spinal motor neurons)

The results revealed that "indirect pathways" play an important role in dexterous hand movements and finally a longtime debate has come to a close.

The key component of this discovery was"the double viral vector transfection technique"in which one vector is retrogradely transported from the terminal zone back to the neuronal cell bodies and the other is transfected at the location of their cell bodies. The expression of the target gene is regulated only in the cells with double transfection by the two vectors. Using this technique, they succeeded in the suppression of the propriospinal neuron selectively and reversibly.

Such an operation was possible in mice in which the inheritable genetic manipulation of germline cells were possible, but impossible in primates until now.

Using this method, further development of gene therapy targeted to a specific neural circuit can be expected.

Professor Tadashi ISA says "this newly developed double viral vector transfection technique can be applied to the gene therapy of the human central nervous system, as we are the same higher primates.

And this is the discovery which reverses the general idea that the spinal cord is only a reflex pathway, but also plays a pivotal role in integrating the complex neural signals which enable dexterous movements."

This study was supported by the Strategic Research Program for Brain Sciences by the MEXT of Japan, collaborated with Fukushima Medical University and Kyoto University.

Tadashi Isa | EurekAlert!
Further information:
http://www.nips.ac.jp

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>