Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating Brain Inflammation May Help Clear Brain of Amyloid Plaques

23.10.2009
In a surprising reversal of long-standing scientific belief, researchers at the Mayo Clinic campus in Florida have discovered that inflammation in the brain is not the trigger that leads to buildup of amyloid deposits and development of Alzheimer's disease.

In fact, inflammation helps clear the brain of these noxious amyloid plaques early in the disease development, as seen from studies in mice that are predisposed to the disorder, say the researchers in the online issue of the FASEB Journal.

"This is the opposite of what most people who study Alzheimer's disease, including our research group, believed," says the study's lead investigator Pritam Das, Ph.D., an assistant professor in the Department of Neuroscience. "And it also suggests that we can take advantage of the brain's own immune cells by directing them to remove amyloid plaques from the brain, thus protecting the brain against their harmful effects."

The study tested the widely held belief that inflammation in the brain increases the production and buildup of a toxic protein known as amyloid beta (Aâ). Clumps of this protein in the brain are the hallmark pathological feature of Alzheimer's disease.

"The belief was that when the brain's immune cells, microglia, are activated following the initial buildup of amyloid plaques, the inflammation that ensues stimulates the brain cell's machinery to produce more Aâ, which then leads to more inflammation," Dr. Das says. "This chronic activation of immune cells results in a self-reinforcing feedback loop that promotes more and more Aâ deposition and inflammation, eventually leading to malfunction and death of brain neurons."

Although this notion, which came mostly from studies in laboratory cells, was accepted throughout the scientific community, the Mayo Clinic researchers developed a way to test it in a living organism — and they expected to see the same result.

"We had initiated these studies using our new in vivo model to confirm whether inducing inflammation in the brain would in fact exacerbate the disease," Dr. Das says.

The researchers used a technique known as "Somatic Brain Transgenesis" to increase expression of Interleukin-6 (IL-6), a cytokine that stimulates an inflammatory immune response in the brains of young mice predisposed to developing age-progressive amyloid plaques. This powerful technology allows researchers to express any gene of interest in specific parts of the body by tagging the gene onto Adeno-associated viruses, which are inert. In this way, they can study the function of any protein in the brain, and also test its potential therapeutic use.

They found that IL-6 triggered inflammation throughout the brain, and they expected to see a big buildup of plaque as well as damage to brain neurons. "Instead, to our surprise, we found that the inflammation prevented plaques from forming and cleared whatever plaque that was already there," Dr. Das says.

Given this unexpected result, they performed additional experiments using different strategies. "First, we expressed IL-6 in the brains of newly born mice that are yet to develop any amyloid plaques and, secondly, we expressed IL-6 in the brains of mice with pre-existing plaque pathology," he says. "In both these cases, we got similar results — the presence of IL-6 leads to the clearance of amyloid plaques from the brain."

The researchers then performed experiments to determine how the amyloid plaques were removed from the brain. Their analysis revealed that the inflammation induced by IL-6 in the brain directed the microglia cells to remove the amyloid plaques from the brain. Microglial cells do this by phagocytosis. "They gobble up the plaque, which they 'see' as a foreign invader, and break it apart," Dr. Das says. Researchers also found that activated microglia cells were closely attached to the plaques and expressed proteins that help in removing the amyloid plaques from the brain. Dr. Das hypothesizes that inflammation helps clear plaque early in the development of Alzheimer's disease, but that at some point, continued production of the amyloid clumps in the brain overwhelms the ability of microglial cells to do their job. At that point, inflammation, chronically activated by presence of the amyloid plaque, can produce its own unhealthy effects on brain function.

"Indeed, it may be feasible to transiently and selectively manipulate the microglia cells to alter amyloid plaques in a manner that is both effective and tolerable," he says. "However, given that chronic inflammation over years of insult may be detrimental, any intervention based on activation of the brain's immune system must clearly strike a balance between the neuroprotective and neurotoxic effects," cautions Dr. Das. "We need to study this phenomenon more thoroughly, but if we are right, it could have implications not only for Alzheimer's disease but also other neurodegenerative disorders characterized by protein buildup in the brain, such as Parkinson's disease."

The study was funded by grants from the American Health Assistance Foundation (AHAF), Mayo Clinic and the National Institutes of Health (NIH).

About Mayo Clinic
Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn., Jacksonville, Fla., and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education visit www.mayo.edu. MayoClinic.com is available as a resource for your health stories.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>