Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulated gatekeeper: how viruses find their way into the cell nucleus

03.10.2011
Adenoviruses cause respiratory diseases and are more dangerous for humans than previously assumed. They manipulate gatekeeper molecules and infiltrate the cell nucleus with the aid of the host cell. A team of researchers headed by cell biologists and virologists from the University of Zurich have succeeded in demonstrating this mechanism in detail for the first time.

They have been around since the dawn of time and are a model of evolutionary success: viruses. Viruses are extremely adaptable but they have a problem: They cannot reproduce, so they smuggle their genes into suitable host cells. In the case of some viruses, the viral DNA has to enter the cell nucleus to reproduce. This has been known for almost 50 years. We know, for instance, that the adenovirus disassembles its protein shell in the first step. Just how the DNA is exposed and infiltrates the host cell, however, remained unclear despite decades of research.

A research group headed by Urs Greber, a cell biologist at the University of Zurich, has now managed to clear up these points. As the scientists recently revealed in the journal Cell Host & Microbe, viruses use the cell’s own mechanisms. The adenovirus latches onto a gatekeeper molecule, which sits on the nuclear pore complex in the nucleus envelope and controls the passage in and out of the nucleus. Another protein in the nuclear pore complex binds and activates a motor protein from the kinesin family, which regulates the transport of substances near the nucleus.

Virus DNA uncoated with aid of host cell
«The motor protein is in an active condition, can bind to micro-tubules and migrate along them,» says Professor Greber, explaining his team’s observations. And the docked virus uses precisely this situation for its purposes. The virus binds to the kinesin and uses the energy of the motor to disrupt its own shell, which exposes the virus DNA and prepares it for transport into the nucleus. The action of the activated motor has another effect, too: The nuclear pore ruptures and becomes markedly bigger, which enables the viral DNA to enter the cell nucleus more easily. Surprisingly, the cell repairs the defective nuclear pore so that the virus breach in the nucleus does not leave any visible damage in its wake. The viral DNA is smuggled into the nucleus practically without trace, where it can reproduce easily.

The researchers used adenoviruses for their study. Adenoviruses cause, among other things, respiratory or epidemic ocular disease. Until recently, they were thought to be relatively harmless for healthy humans. However, the results of another research group recently demonstrated that a new kind of adenovirus triggered a dreaded zoonotic disease, meaning it was transmitted from an animal to humans before spreading from one person to another.

Literature:
Sten Strunze, Martin F. Engelke, I-Hsuan Wang, Daniel Puntener, Karin Boucke, Sibylle Schleich, Michael Way, Philipp Schoenenberger, Christoph J. Burckhardt and Urs F. Greber: Kinesin-1-Mediated Capsid Disassembly and Disruption of the Nuclear Pore Complex Promote Virus Infection, in: Cell Host & Microbe 10, 15. September 2011, DOI: 10.1016/j.chom.2011.08.010
Contacts:
Prof. Urs Greber
Institute of Molecular Biology
University of Zurich
Phone: +41 44 635 48 41
E-mail: urs.greber@imls.uzh.ch
Beat Müller
Media Relations
University of Zurich
Phone: +41 44 634 44 32
E-mail: beat.mueller@kommunikation.uzh.ch

Nathalie Huber | idw
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>