Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manganese damages the immune response in marine animals

11.08.2009
Hypoxia, or lack of oxygen, in bottom waters is a well known environmental problem. New research at the University of Gothenburg, Sweden adds to the list of ill effects: hypoxia leads to increased levels of manganese, which damages the immune response in marine animals.

Water eutrophication and the resulting hypoxia is an ever-current issue, not least in connection with summer algal blooms. A more recently acknowledged problem is that hypoxia, which occurs when algae is broken down, increases the release of toxic metals from bottom sediments. Researchers at the University of Gothenburg have found that one of these metals, manganese, may damage the immune response in marine animals.

Essential - and toxic
While low doses of manganese are essential to life in both humans and animals, it has been known for a long time that higher doses can be detrimental to health. Manganese is abundant in soft ocean bottoms, but since it is normally bound to the sediments it usually does not cause any ill effects. However, hypoxia releases the manganese from the sediments, making it a threat to the health of marine species.
Affects the bottom living lobster
Researcher Carolina Oweson, Department of Marine Ecology at the University of Gothenburg, has studied how manganese in Swedish coastal waters affects the Norway lobster, the blue mussel and the common sea star. Her conclusion is that while manganese does not seem to have a permanent effect, it does threaten the survival of several species during periods of hypoxia.
Norwegian lobster
'While the effects of manganese on the immune response in the studied animals vary, they are all affected in some way. The Norway lobster and mussels are affected the most, for example through an increased susceptibility to infections', says Oweson.
Similar to humans
Marine animals are of great interest to researchers since their immune systems are similar to those of humans in many ways. The species in Oweson's study also make up an important part of our marine ecosystem. In addition, new findings indicating that hypoxia is becoming increasingly common in coastal areas around the world make Oweson's study even more relevant.

The thesis Immunotoxicology in Marine Invertebrates - Effects of Manganese on Immune Response was publicly defended on June 5.

For more information, please contact:
Carolina Oweson, Department of Marine Ecology, University of Gothenburg
+46 (0) 523-185 83
+46 (0) 709-751 301
carolina.oweson@marecol.gu.se

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/19653
http://www.gu.se

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>