Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manchester's 'first step' to perfect drug combinations

24.10.2011
The researchers found a way of identifying ideal drug combinations from billions of others which would prevent inflammation from occurring.

The findings, published in Nature Chemical Biology, could be the first step in the development of new drug combinations to combat severe diseases and conditions.

Most non-infectious disease, such as cancer, stroke and Alzheimer's are worsened by inflammation, which is the body's natural defence mechanism.

Inflammation has evolved to help fight infection but can also be very damaging in long term disease, prolonging suffering and ultimately risking premature death.

After a stroke, the body reacts to the injury as if it were an infection, causing further damage. By blocking the inflammation, the chances of survival or higher quality of life following a stroke are thus greatly enhanced. This can be achieved by quickly and effectively identifying combinations of drugs which can be used together.

Existing 'clot-busting' stroke drugs are only effective if administered within three hours after the stroke – often very difficult to achieve as people are often unaware they are having a stroke – and even then do not completely solve the problem, often leaving sufferers with serious disabilities.

However, using ideal drug combinations the researchers suggest they can block inflammation and therefore greatly reduce the damage caused by non-communicable diseases such as stroke.

Although the researchers have initially concentrated on stroke, they believe the process can be applied to all drugs and for a huge variety of diseases.

The multi-disciplinary team of researchers, led by Professor Douglas Kell, Professor of Bioanalytical Science at The University of Manchester, developed an evolutionary computer programme which rapidly sifted through nine billion different combinations of potential drugs.

Sorting and testing 50 drug combinations at a time using robotics in the laboratory, the scientists were able to find effective combinations and then refine them as many times as necessary to find ideal combinations.

Ultimately, they hope this will lead to the development of tailored therapies for treating inflammation.

Professor Kell, who is also Chief Executive of the Biotechnology and Biological Sciences Research Council, said: "Most diseases have complex causes. This makes their analysis a problem of systems biology, and to find novel therapies multiple targets need to be attacked at once.

"We have devised a strategy, based on Darwinian evolution, to make this considerably easier. Although our immediate interest is inflammation and conditions such as stroke, our approach is universal and is thus applicable to all complex diseases."

Another advantage of choosing ideal drug combinations is that it allows patients to take smaller doses, which reduces potential toxicology concerns.

Professor Kell and his team worked with computer scientists at the University to create the programme. Professor Pedro Mendes explains: "Our experiments were guided by software that is based on an evolutionary algorithm. The algorithm suggests new drug combinations from previous ones by re-mixing their components – much like the DNA of a child is a mix of that of their parents.

"The new drug combinations are then tested and the best are selected to continue generating new ones. In each experiment we tested 50 drug combinations, then the software would tell us which new ones to test in the next experiment."

Daniel Cochlin | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>