Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammals Can be Stimulated to Regrow Damaged Inner Retina Nerve Cells

26.11.2008
Researchers at the University of Washington (UW) have reported for the first time that mammals can be stimulated to regrow inner nerve cells in their damaged retinas. Located in the back of the eye, the retina's role in vision is to convert light into nerve impulses to the brain.

The findings on retina self-repair in mammals will be published this week in the Early Edition of the Proceedings of the National Academy of Sciences. Other scientists have shown before that certain retina nerve cells from mice can proliferate in a laboratory dish. Today's report gives evidence that retina cells can be encouraged to regenerate in living mice.

The UW researchers in the laboratory of Dr. Tom Reh, professor of biological structure, studied a particular retinal cell called the Müller glia.

"This type of cell exists in all the retinas of all vertebrates," Reh said, "so the cellular source for regeneration is present in the human retina." He added that further studies of the potential of these cells to regenerate and of methods to re-generate them may lead to new treatments for vision loss from retina-damaging diseases, like macular degeneration.

The researchers pointed out the remarkable ability of cold-blooded vertebrates like fish to regenerate their retinas after damage. Birds, which are warm-blooded, have some limited ability to regenerate retinal nerve cells after exposure to nerve toxins. Fish can generate all types of retinal nerve cells, the researcher said, but chicks produce only a few types of retinal nerve cell replacements, and few, if any, receptors for detecting light.

Müller glia cells generally stop dividing after a baby's eyes pass a certain developmental stage. In both fish and birds, the researchers explained, damage to retinal cells prompts the specialized Müller glia cells to start dividing again and to increase their options by becoming a more general type of cell called a progenitor cell. These progenitor cells can then turn into any of several types of specialized nerve cells.

Compared to birds, the scientist said, mammals have an even more limited Müller glia cell response to injury. In an injured mouse or rat retina, the cells may react and become larger, but few start dividing again.

Because the Müller glia cells appeared to have the potential to regrow but won't do so spontaneously after an injury, several groups of researchers have tried to stimulate them to grow in lab dishes and in lab animals by injecting cell growth factors or factors that re-activate certain genes that were silenced after embryonic development. These studies showed that the Müller glia cells could be artificially stimulated to start dividing again, and some began to show light-detecting receptors. However, these studies, the researchers noted, weren't able to detect any regenerated inner retina nerve cells, except when the Müller glia cells were genetically modified with genes that specifically promote the formation of amacrine cells, which act as intermediaries in transmitting nerve signals.

"This was puzzling," Reh said, "because in chicks amacrine cells are the primary retinal cells that are regenerated after injury." To resolve the discrepancy between what was detected in chicks and not detected in rodents, the Reh laboratory conducted a systematic analysis of the response to injury in the mouse retina, and the effects of specific growth factor stimulation on the proliferation of Müller glia cells.

The researchers injected a substance into the retina to eliminate ganglion cells (a type of nerve cell found near the surface of the retina) and amacrine cells. Then by injecting the eye with epidermal growth factor (EGF), fibroblast growth factor 1 (FGF1) or a combination of FGF1 and insulin, they were able to stimulate the Müller glia cells to re-start their dividing engines and begin to proliferate across the retina.

The proliferating Müller glia cells first transformed into unspecialized cells. The researchers were able to detect this transformation by checking for chemical markers that indicate progenitor cells. Soon some of these general cells changed into amacrine cells. The researchers detected their presence by checking for chemicals produced only by amacrine cells.

Many of the progenitor cells arising from the dividing Müller glia cells, the researchers observed, died within the first week after their production. However, those that managed to turn into amacrine cells survived for at least 30 days.

"It's not clear why this occurs," the researchers wrote, "but some speculate that nerve cells have to make stable connections with other cells to survive."

In addition to Reh, the authors of the research findings, "Stimulation of Neural Regeneration in the Mouse Retina," were Mike O. Karl, Susan Hayes, Branden Nelson, Kristine Tan, and Brian Buckingham, all of the UW Department of Biological Structure. The research was supported by postdoctoral fellowships from the German Research Foundation, ProRetina Travel Grants, National Research Service Awards, and a National Eye Institute grant from the National Institutes of Health.

Leila Gray | Newswise Science News
Further information:
http://www.washington.edu

Further reports about: Cells FGF1 Nerve Researcher Retina amacrine glia cells injury mammals nerve cells progenitor progenitor cells regenerate retinal

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>