Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammals defend against viruses differently than invertebrates

24.06.2014

Biologists have long wondered if mammals share the elegant system used by insects, bacteria and other invertebrates to defend against viral infection. Two back-to-back studies in the journal Science last year said the answer is yes, but a study just published in Cell Reports by researchers at the Icahn School of Medicine at Mount Sinai found the opposite.

In the Mount Sinai study, the results found that the defense system used by invertebrates — RNA interferences or RNAi — is not used by mammals as some had argued. RNAi are small molecules that attach to molecular scissors used by invertebrates to cut up invading viruses.

Mammals use a form of RNAi to fine-tune the expression of hundreds of genes that coordinate development in the womb, says the study's senior author, Benjamin tenOever, PhD, Fishberg Professor in the Department of Medicine and Department of Microbiology at the Icahn School of Medicine at Mount Sinai. But it has never been clear that adult mammals use RNAi the same way that plants and insects do, he says. "Mammals have cell machinery that looks capable of producing RNAi to fight virus, but we believe it only helps to produce different small RNA products called microRNAs, which are not antiviral," Dr. tenOever says.

The correct answer matters because RNAi is being studied as a potential basis for new kinds of drugs for the treatment of hemophilia, beta-thalassemia and many viral infections, says Dr. tenOever.

"We believe our results settle a longstanding debate about whether mammals, including humans and mice, fight viruses using RNAi, and the answer is good news," he says. "Drug designers interested in using RNAi to treat disease have worried that if RNAi is part of the mammalian response to viral infections, RNAi-based agents could compromise a human's immune response, producing unintended consequences. That is not a concern now, based on our findings."

Mammals are known to fend off viruses with a system based on interferons, signaling proteins made by immune cells that amplify the body's attack on invaders. The finding that mammals do not use RNAi to fight viruses suggests that RNAi-based drugs could augment the existing interferon response in mammals, Dr. tenOever says. "We could harness this potent RNAi viral-killing machine when natural human immunity isn't enough."

To answer the question, a team of researchers from the Icahn Graduate School of Biomedical Science used a virus that produces oral lesions in cows and pigs. They eliminated the part of the virus that causes disease, rendering it harmless and susceptible to both RNAi and interferons. They then took this harmless virus and gave it the capacity to block either interferon or RNAi.

In experiments with mice, when the virus was designed to block interferon, no immune defense occurred and the interferon-blocking virus flourished. In contrast, giving the virus the capacity to block RNAi, found that the animals mounted a robust interferon-based defense that further weakened the RNAi-blocking virus. The same thing happened when the RNAi-blocking virus was introduced to engineered mice that could not produce interferons. "If mammals used interferon and RNAi to fight the virus, we would have seen the RNAi-blocking virus flourish in at least this setting — but we did not," Dr. tenOever says. "This is the strongest published data that argues against recent claims that RNAi exists in mammals, he says.

###

Study co-authors include Mount Sinai researchers Simone Backes, PhD, Ryan Langlois, PhD, Sonja Schmid, PhD, Andrew Varble, PhD, Jaehee Shim and David Sachs. The study was supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under grant numbers W911NF-12-R-0012 and W911NF-07-R-0003.

About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services—from community‐based facilities to tertiary and quaternary care.

The System includes approximately 6,600 primary and specialty care physicians, 12‐minority‐owned free‐standing ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.

For more information, visit http://www.mountsinai.org, or find Mount Sinai on Facebook, Twitter and YouTube.

Greg Williams | Eurek Alert!

Further reports about: Health Medicine RNA RNAi immune infections interferons producing viruses

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>