Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammals defend against viruses differently than invertebrates

24.06.2014

Biologists have long wondered if mammals share the elegant system used by insects, bacteria and other invertebrates to defend against viral infection. Two back-to-back studies in the journal Science last year said the answer is yes, but a study just published in Cell Reports by researchers at the Icahn School of Medicine at Mount Sinai found the opposite.

In the Mount Sinai study, the results found that the defense system used by invertebrates — RNA interferences or RNAi — is not used by mammals as some had argued. RNAi are small molecules that attach to molecular scissors used by invertebrates to cut up invading viruses.

Mammals use a form of RNAi to fine-tune the expression of hundreds of genes that coordinate development in the womb, says the study's senior author, Benjamin tenOever, PhD, Fishberg Professor in the Department of Medicine and Department of Microbiology at the Icahn School of Medicine at Mount Sinai. But it has never been clear that adult mammals use RNAi the same way that plants and insects do, he says. "Mammals have cell machinery that looks capable of producing RNAi to fight virus, but we believe it only helps to produce different small RNA products called microRNAs, which are not antiviral," Dr. tenOever says.

The correct answer matters because RNAi is being studied as a potential basis for new kinds of drugs for the treatment of hemophilia, beta-thalassemia and many viral infections, says Dr. tenOever.

"We believe our results settle a longstanding debate about whether mammals, including humans and mice, fight viruses using RNAi, and the answer is good news," he says. "Drug designers interested in using RNAi to treat disease have worried that if RNAi is part of the mammalian response to viral infections, RNAi-based agents could compromise a human's immune response, producing unintended consequences. That is not a concern now, based on our findings."

Mammals are known to fend off viruses with a system based on interferons, signaling proteins made by immune cells that amplify the body's attack on invaders. The finding that mammals do not use RNAi to fight viruses suggests that RNAi-based drugs could augment the existing interferon response in mammals, Dr. tenOever says. "We could harness this potent RNAi viral-killing machine when natural human immunity isn't enough."

To answer the question, a team of researchers from the Icahn Graduate School of Biomedical Science used a virus that produces oral lesions in cows and pigs. They eliminated the part of the virus that causes disease, rendering it harmless and susceptible to both RNAi and interferons. They then took this harmless virus and gave it the capacity to block either interferon or RNAi.

In experiments with mice, when the virus was designed to block interferon, no immune defense occurred and the interferon-blocking virus flourished. In contrast, giving the virus the capacity to block RNAi, found that the animals mounted a robust interferon-based defense that further weakened the RNAi-blocking virus. The same thing happened when the RNAi-blocking virus was introduced to engineered mice that could not produce interferons. "If mammals used interferon and RNAi to fight the virus, we would have seen the RNAi-blocking virus flourish in at least this setting — but we did not," Dr. tenOever says. "This is the strongest published data that argues against recent claims that RNAi exists in mammals, he says.

###

Study co-authors include Mount Sinai researchers Simone Backes, PhD, Ryan Langlois, PhD, Sonja Schmid, PhD, Andrew Varble, PhD, Jaehee Shim and David Sachs. The study was supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under grant numbers W911NF-12-R-0012 and W911NF-07-R-0003.

About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services—from community‐based facilities to tertiary and quaternary care.

The System includes approximately 6,600 primary and specialty care physicians, 12‐minority‐owned free‐standing ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.

For more information, visit http://www.mountsinai.org, or find Mount Sinai on Facebook, Twitter and YouTube.

Greg Williams | Eurek Alert!

Further reports about: Health Medicine RNA RNAi immune infections interferons producing viruses

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>