Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammals defend against viruses differently than invertebrates

24.06.2014

Biologists have long wondered if mammals share the elegant system used by insects, bacteria and other invertebrates to defend against viral infection. Two back-to-back studies in the journal Science last year said the answer is yes, but a study just published in Cell Reports by researchers at the Icahn School of Medicine at Mount Sinai found the opposite.

In the Mount Sinai study, the results found that the defense system used by invertebrates — RNA interferences or RNAi — is not used by mammals as some had argued. RNAi are small molecules that attach to molecular scissors used by invertebrates to cut up invading viruses.

Mammals use a form of RNAi to fine-tune the expression of hundreds of genes that coordinate development in the womb, says the study's senior author, Benjamin tenOever, PhD, Fishberg Professor in the Department of Medicine and Department of Microbiology at the Icahn School of Medicine at Mount Sinai. But it has never been clear that adult mammals use RNAi the same way that plants and insects do, he says. "Mammals have cell machinery that looks capable of producing RNAi to fight virus, but we believe it only helps to produce different small RNA products called microRNAs, which are not antiviral," Dr. tenOever says.

The correct answer matters because RNAi is being studied as a potential basis for new kinds of drugs for the treatment of hemophilia, beta-thalassemia and many viral infections, says Dr. tenOever.

"We believe our results settle a longstanding debate about whether mammals, including humans and mice, fight viruses using RNAi, and the answer is good news," he says. "Drug designers interested in using RNAi to treat disease have worried that if RNAi is part of the mammalian response to viral infections, RNAi-based agents could compromise a human's immune response, producing unintended consequences. That is not a concern now, based on our findings."

Mammals are known to fend off viruses with a system based on interferons, signaling proteins made by immune cells that amplify the body's attack on invaders. The finding that mammals do not use RNAi to fight viruses suggests that RNAi-based drugs could augment the existing interferon response in mammals, Dr. tenOever says. "We could harness this potent RNAi viral-killing machine when natural human immunity isn't enough."

To answer the question, a team of researchers from the Icahn Graduate School of Biomedical Science used a virus that produces oral lesions in cows and pigs. They eliminated the part of the virus that causes disease, rendering it harmless and susceptible to both RNAi and interferons. They then took this harmless virus and gave it the capacity to block either interferon or RNAi.

In experiments with mice, when the virus was designed to block interferon, no immune defense occurred and the interferon-blocking virus flourished. In contrast, giving the virus the capacity to block RNAi, found that the animals mounted a robust interferon-based defense that further weakened the RNAi-blocking virus. The same thing happened when the RNAi-blocking virus was introduced to engineered mice that could not produce interferons. "If mammals used interferon and RNAi to fight the virus, we would have seen the RNAi-blocking virus flourish in at least this setting — but we did not," Dr. tenOever says. "This is the strongest published data that argues against recent claims that RNAi exists in mammals, he says.

###

Study co-authors include Mount Sinai researchers Simone Backes, PhD, Ryan Langlois, PhD, Sonja Schmid, PhD, Andrew Varble, PhD, Jaehee Shim and David Sachs. The study was supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under grant numbers W911NF-12-R-0012 and W911NF-07-R-0003.

About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services—from community‐based facilities to tertiary and quaternary care.

The System includes approximately 6,600 primary and specialty care physicians, 12‐minority‐owned free‐standing ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.

For more information, visit http://www.mountsinai.org, or find Mount Sinai on Facebook, Twitter and YouTube.

Greg Williams | Eurek Alert!

Further reports about: Health Medicine RNA RNAi immune infections interferons producing viruses

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>