Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mama Whales Teach Babies Where to Eat

10.02.2009
University of Utah biologists discovered that young “right whales” learn from their mothers where to eat, raising concern about their ability to find new places to feed if Earth’s changing climate disrupts their traditional dining areas.

“A primary concern is, what are whales going to do with global warming, which may change the location and abundance of their prey?” asks Vicky Rowntree, research associate professor of biology and a coauthor of the new study. “Can they adapt if they learn from their mother where to feed – or will they die?”

Previous research by Rowntree and colleagues showed that when climate oscillations increase sea temperatures, southern right whales give birth to fewer calves because the warm water reduces the abundance of krill, which are small, shrimp-like crustaceans eaten by the whales.

The new study – scheduled for publication in the Feb. 15 issue of the journal Molecular Ecology – used genetic and chemical isotope evidence to show that mothers teach their calves where to go for food.

“Southern right whales consume enormous amounts of food and have to travel vast distances to find adequate amounts of small prey,” says study coauthor Jon Seger, professor of biology at the University of Utah. “This study shows that mothers teach their babies in the first year of life where to go to feed in the immensity of the ocean.”

The study tracked how whales are related by analyzing maternal DNA, and then compared that with dietary information obtained by characterizing different forms or isotopes of chemical elements in their skin. The two techniques – which the researchers say they used together for the first time – allowed the scientists to determine that whale mothers, their offspring and other extended family members eat in the same place.

“North Atlantic right whales feed in similar patterns and scientists have access to their feeding areas, but we don’t know where South Atlantic whales are feeding, so we had to use a combination of techniques to track this down,” says Luciano Valenzuela, a postdoctoral researcher in biology who led the study as part of his doctoral thesis at Utah.

The study’s other coauthor was Mariano Sironi, scientific director of the Instituto de Conservación de Ballenas (Institute for the Conservation of Whales) in Argentina.

Related Whales ‘Chow Down’ Together

For 38 years, Rowntree and colleagues have followed a group of southern right whales that migrate for three months each year to their calving area at Argentina’s Península Valdés, “which is as far south of the equator as we are north of the equator here in Salt Lake City,” says Rowntree, who also directs the right whale program at the Ocean Alliance’s Whale Conservation Institute.

Adult southern right whales are up to 50 feet long, and their calves are about 20 feet long and weigh a ton at birth.

The whales migrate to their calving grounds in winter, when they fast, and give birth in early spring. Three months later, they travel long distances in the South Atlantic to feed for the remainder of the year on krill and on other crustaceans named copepods. Rowntree calls it “a huge chow down.”

Whaling records from the 1800s and 1900s suggested southern right whales had six main feeding areas in the South Atlantic. However, scientists do not know where most of the whales feed now.

Rather than searching for right whale feeding grounds visually – an enormous if not impossible task given the lack of ship traffic in the vast South Atlantic – the scientists took a novel approach. During September and October of 2003 through 2006, Valenzuela collected small skin samples using a punch device that doesn’t harm the animals.

“The skin sample is a little bigger than the size of a pencil eraser,” Rowntree says.

From the skin samples, Valenzuela analyzed mitochondrial DNA, which is inherited only from the mother. The DNA revealed family relationships among whales. The researchers were able to distinguish individual whales by the patterns of whitish, callous-like material on their heads.

The skin samples also were analyzed for different forms or isotopes of carbon and nitrogen. The isotopes, which are present in food, are deposited in different tissues of the body after consumption. Food from any given location has a unique isotope “signature.” That made it possible to determine which whales fed in the same place without actually knowing where the feeding areas were.

Together, the DNA and isotope data revealed which whales were related and where each animal fed.

“The main result is that individuals from particular families have very specific isotope pattern showing that animals from specific lineages feed in the same area,” Valenzuela says.

Because the DNA was mitochondrial, which is passed only from mothers to offspring, the findings indicate mother whales teach their calves where to feed.

The study was funded by Ocean Alliance’s Whale Conservation Institute and the Canadian Whale Institute.

Contacts:
-- Luciano Valenzuela, postdoctoral researcher in biology
– office (801) 587-3405, cellular (801) 898-5290, valenzuela@biology.utah.edu
-- Vicky Rowntree, research associate professor of biology
– office (801) 581-8478, cellular (801) 979-6164 rowntree@biology.utah.edu
-- Jon Seger, professor of biology
– office (801) 581-4758, cellular (801) 597-0771,seger@biology.utah.edu

Lee Siegel | Newswise Science News
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

nachricht German scientists question study about plastic-eating caterpillars
15.09.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

Solar wind impacts on giant 'space hurricanes' may affect satellite safety

19.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>