Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malignant stem cells may explain why some breast cancers develop and recur

17.08.2011
Abnormalities in these cells may indicate the earliest mutations in breast cancers, an OHSU Knight Cancer Institute study found

Mutations that are found in stem cells could be causing some breast cancers to develop and may be the reason the disease recurs. These abnormal cells are likely controlling cell functions in the tumor and, given they are not targeted by chemotherapy and radiation, they enable the disease to recur.

The mutations were discovered in a study conducted by scientists and physicians at the Oregon Health & Science University Knight Cancer Institute. The study, which examined breast cancer cells removed during surgery, was recently published online in the Annals of Surgical Oncology.

"By studying normal and malignant cells that were collected from breast tissues removed during surgery, we were able to look at what is occurring in the body," said SuEllen J. Pommier, Ph.D., the lead author of the study and associate research professor in the division of surgical oncology at the OHSU Knight Cancer Institute.

Working with samples taken directly from surgeries made the findings in this study possible, Pommier said, because the biology of breast stem cells could be compared with their malignant counterparts in a way that hadn't been done before. The cultured cell lines used in most studies can't provide accurate information about normal breast stem cells.

The study, which was funded primarily by the Avon Foundation for Women, may prove that some current therapies that target mutations in the tumor won't be effective in stamping out the disease for some patients. It also suggests that more research should be done in two areas:

Determining the role of PIK3CA/AKT1 signaling mutations, which were found in 73 percent of the tumors in this study of fresh surgical specimens – an occurrence rate that is much higher than previously detected in stored samples.

And, exploring the importance of the loss of CD24 expression, which previously was considered a requirement for breast cancer stem cells, but may not be a characteristic of all breast cancer stem cells.

Understanding the biology of individual tumors is the primary mission of the OHSU Knight Cancer Institute. "This study provided us with new insights into breast cancer stem cells and possibly into the earliest mutations. That information is crucial for developing treatments," Pommier added.

In addition to support from the Avon Foundation for Women, this study was funded by a Vertex Pharmaceutical/Oregon Health & Science Collaborative Research Grant.

About the OHSU Knight Cancer Institute

With the latest treatments, technologies, hundreds of research studies and approximately 400 clinical trials, the OHSU Knight Cancer Institute is the only National Cancer Institute-designated Cancer Center between Sacramento and Seattle— an honor earned only by the nation's top cancer centers. The honor is shared among the more than 650 doctors, nurses, scientists and staff who work together at the OHSU Knight Cancer Institute to reduce the impact of cancer. For more information visit: www.ohsuhealth.com/cancer or www.facebook.com/OHSUKnight.

Elisa Williams | EurekAlert!
Further information:
http://www.ohsu.edu

Further reports about: Cancer Malignant Hematopoiesis OHSU Science TV health services stem cells

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>