Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malignant stem cells may explain why some breast cancers develop and recur

17.08.2011
Abnormalities in these cells may indicate the earliest mutations in breast cancers, an OHSU Knight Cancer Institute study found

Mutations that are found in stem cells could be causing some breast cancers to develop and may be the reason the disease recurs. These abnormal cells are likely controlling cell functions in the tumor and, given they are not targeted by chemotherapy and radiation, they enable the disease to recur.

The mutations were discovered in a study conducted by scientists and physicians at the Oregon Health & Science University Knight Cancer Institute. The study, which examined breast cancer cells removed during surgery, was recently published online in the Annals of Surgical Oncology.

"By studying normal and malignant cells that were collected from breast tissues removed during surgery, we were able to look at what is occurring in the body," said SuEllen J. Pommier, Ph.D., the lead author of the study and associate research professor in the division of surgical oncology at the OHSU Knight Cancer Institute.

Working with samples taken directly from surgeries made the findings in this study possible, Pommier said, because the biology of breast stem cells could be compared with their malignant counterparts in a way that hadn't been done before. The cultured cell lines used in most studies can't provide accurate information about normal breast stem cells.

The study, which was funded primarily by the Avon Foundation for Women, may prove that some current therapies that target mutations in the tumor won't be effective in stamping out the disease for some patients. It also suggests that more research should be done in two areas:

Determining the role of PIK3CA/AKT1 signaling mutations, which were found in 73 percent of the tumors in this study of fresh surgical specimens – an occurrence rate that is much higher than previously detected in stored samples.

And, exploring the importance of the loss of CD24 expression, which previously was considered a requirement for breast cancer stem cells, but may not be a characteristic of all breast cancer stem cells.

Understanding the biology of individual tumors is the primary mission of the OHSU Knight Cancer Institute. "This study provided us with new insights into breast cancer stem cells and possibly into the earliest mutations. That information is crucial for developing treatments," Pommier added.

In addition to support from the Avon Foundation for Women, this study was funded by a Vertex Pharmaceutical/Oregon Health & Science Collaborative Research Grant.

About the OHSU Knight Cancer Institute

With the latest treatments, technologies, hundreds of research studies and approximately 400 clinical trials, the OHSU Knight Cancer Institute is the only National Cancer Institute-designated Cancer Center between Sacramento and Seattle— an honor earned only by the nation's top cancer centers. The honor is shared among the more than 650 doctors, nurses, scientists and staff who work together at the OHSU Knight Cancer Institute to reduce the impact of cancer. For more information visit: www.ohsuhealth.com/cancer or www.facebook.com/OHSUKnight.

Elisa Williams | EurekAlert!
Further information:
http://www.ohsu.edu

Further reports about: Cancer Malignant Hematopoiesis OHSU Science TV health services stem cells

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>