Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Male scent drives moth's evolution

06.03.2009
Male moth smell different depending on their age, and the French male corn borer moreover smells different from its fellow species in Slovenia, for instance.
It may be these different smells that contribute to the formation of new species. This is shown in a new study from Lund University in Sweden.

It was previously known that odorant substances, so-called pheromones, play a role in the sex lives of many animals.

When a female moth wants to attract a male to mate with, she emits scents that males can perceive from long distances. But males also have scents that are attractive to females in varying degree. For many years, ecologists at Lund University have pursued research on precisely how individuals, of both sexes, use pheromones.

In a new study, phD student Jean-Marc Lassance and Professor Christer Löfstedt at the Division of Chemical Ecology have examined how pheromones affect the choice of partner in a moth species called the European corn borer.

The corn borer is a small moth with a wingspan of 2-3 centimeters. The species has a natural distribution in Southern and Central Europe, and it also occurs in Southern Sweden. It is often considered a serious pest, especially of corn (maize). By understanding its life cycle and how it reproduces, and with the help of the species' own olfactory substances instead of chemical poisons, damage to grain could be reduced.

But research on the corn borer also made Lassance and Löfstedt wonder whether scents contribute to the evolution of new species. The two Lund researchers have analyzed the consistency of the olfactory compounds and also the genes of moth males from France, Hungary, and Slovenia, among other countries, and discovered that the males' pheromones differ. The male corn borer in France smells different from male moths in Slovenia or USA.

The Lund scientists have reported that females can use scents to distinguish where males come from, their age, and perhaps even how good their genes are for mating and reproduction. Lassance and Löfstedt propose that differences in pheromones may be a force that impels evolution among moths and butterflies. Females among the corn borers studied seem to prefer older males that produce a particular typical pheromone. This choice of partner increases their isolation from corn borers from different areas, which in turn can reinforce further the development of new species.

"Our research findings may come to alter our understanding of the role of olfactory compounds in the evolution of species," says Jean-Marc Lassance. "We show how males' and females' scent production is governed by the same genes and how they use similar pheromones in a chemical dialogue during mating."

The researchers' study is now published in the scientific journal BMC Biology.

For more information, please contact Jean-Marc Lassance, phone: +46 (0)46-222 20 484 or Christer Löfstedt, phone: +46 (0)46 - 222 93 38 (mailto:jean-marc.lassance@ekol.lu.se or christer.lofstedt@ekol.lu.se)

Pressofficer Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se; +46-46 222 71 86

Link to the article in BMC Biology: http://www.biomedcentral.com/1741-7007/7/10

BMC Biology 2009, 7:10; 3 March 2009

Lena Björk Blixt | idw
Further information:
http://www.pheromone.ekol.lu.se/ostrinia.html
http://www.biomedcentral.com/1741-7007/7/10

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>