Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Male scent drives moth's evolution

06.03.2009
Male moth smell different depending on their age, and the French male corn borer moreover smells different from its fellow species in Slovenia, for instance.
It may be these different smells that contribute to the formation of new species. This is shown in a new study from Lund University in Sweden.

It was previously known that odorant substances, so-called pheromones, play a role in the sex lives of many animals.

When a female moth wants to attract a male to mate with, she emits scents that males can perceive from long distances. But males also have scents that are attractive to females in varying degree. For many years, ecologists at Lund University have pursued research on precisely how individuals, of both sexes, use pheromones.

In a new study, phD student Jean-Marc Lassance and Professor Christer Löfstedt at the Division of Chemical Ecology have examined how pheromones affect the choice of partner in a moth species called the European corn borer.

The corn borer is a small moth with a wingspan of 2-3 centimeters. The species has a natural distribution in Southern and Central Europe, and it also occurs in Southern Sweden. It is often considered a serious pest, especially of corn (maize). By understanding its life cycle and how it reproduces, and with the help of the species' own olfactory substances instead of chemical poisons, damage to grain could be reduced.

But research on the corn borer also made Lassance and Löfstedt wonder whether scents contribute to the evolution of new species. The two Lund researchers have analyzed the consistency of the olfactory compounds and also the genes of moth males from France, Hungary, and Slovenia, among other countries, and discovered that the males' pheromones differ. The male corn borer in France smells different from male moths in Slovenia or USA.

The Lund scientists have reported that females can use scents to distinguish where males come from, their age, and perhaps even how good their genes are for mating and reproduction. Lassance and Löfstedt propose that differences in pheromones may be a force that impels evolution among moths and butterflies. Females among the corn borers studied seem to prefer older males that produce a particular typical pheromone. This choice of partner increases their isolation from corn borers from different areas, which in turn can reinforce further the development of new species.

"Our research findings may come to alter our understanding of the role of olfactory compounds in the evolution of species," says Jean-Marc Lassance. "We show how males' and females' scent production is governed by the same genes and how they use similar pheromones in a chemical dialogue during mating."

The researchers' study is now published in the scientific journal BMC Biology.

For more information, please contact Jean-Marc Lassance, phone: +46 (0)46-222 20 484 or Christer Löfstedt, phone: +46 (0)46 - 222 93 38 (mailto:jean-marc.lassance@ekol.lu.se or christer.lofstedt@ekol.lu.se)

Pressofficer Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se; +46-46 222 71 86

Link to the article in BMC Biology: http://www.biomedcentral.com/1741-7007/7/10

BMC Biology 2009, 7:10; 3 March 2009

Lena Björk Blixt | idw
Further information:
http://www.pheromone.ekol.lu.se/ostrinia.html
http://www.biomedcentral.com/1741-7007/7/10

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>