Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Male Germ Cells Can Be Directly Converted Into Other Cell Types

29.07.2009
Researchers have found a way to directly convert spermatogonial stem cells, the precursors of sperm cells, into tissues of the prostate, skin and uterus. Their approach, described this month in the journal Stem Cells, may prove to be an effective alternative to the medical use of embryonic stem cells.

The hunt for alternatives to embryonic stem cells has led to some promising yet problematic approaches, some of which involve spermatagonial stem cells (SSCs).

Researchers recently observed, for example, that SSCs grown in the laboratory will eventually give rise to a few cells that look and act like embryonic stem cells. This process can take months, however, and only a small percentage of the SSCs are converted into “embryonic stem-like” cells.

Other researchers have used viruses to insert genes into SSCs that will spur them to turn into ES-like cells. But this approach is problematic and the use of viruses to ferry in the needed genes has caused concern.

The new method, recently developed at the University of Illinois, takes advantage of the unusual interaction of two tissue types: the epithelium and the mesenchyme. The epithelium lines the cavities and surfaces of glands and many organs and secretes enzymes and other factors that are essential to the function of these tissues. The mesenchyme is the connective tissue in embryos. (In adults, the connective tissue is called stroma.)

In the 1950s, scientists discovered that the epithelium takes its developmental instructions from the mesenchyme. For example, when researchers put bladder epithelial cells on the mesenchyme of a prostate gland, the bladder cells were changed into prostatic epithelium. The prostatic mesenchyme had altered the fate of the bladder epithelium.

“The mesenchyme – it’s the director; it’s controlling the show,” said University of Illinois veterinary biosciences professor Paul Cooke, who led the new study with postdoctoral researcher Liz Simon.

Cooke began the effort with what even he considered an unlikely proposition.

“Could we take spermatagonial stem cells and cause them to directly change into other cell types by putting them with various mesenchymes and growing them in the body?” he said. “I thought it was possible, but I didn’t think it would work.”

The experiment did work, however. When Simon placed SSCs from inbred mice on prostate mesenchyme and grafted the combination into living mice, the SSCs became prostatic epithelium. When combined with skin mesenchyme and grown in vivo, the SSCs became skin epithelum. The researchers were even able to convert SSCs into uterine epithelium by using uterine mesenchyme.

The newly formed tissues had all the physical characteristics of prostate, skin or uterus, and produced the telltale markers of those tissue types, Cooke said. They also stopped looking and behaving like SSCs.

To assure that their tests were not contaminated with epithelial cells from the source of the mesenchyme cells, the researchers repeated the experiments using a mouse whose cells contained a gene that fluoresces green under ultraviolet light. The SSCs were obtained from a green-fluorescing mouse, but the mesenchyme came from a non-fluorescing mouse. This enabled the researchers to trace the fate of the SSCs. If the newly formed prostatic epithelium glowed green even though the mesenchyme did not, for example, the researchers knew that the SSCs had been converted into prostatic epithelium.

Cooke hopes that a more streamlined approach can be developed that makes use of a man’s own SSCs and stroma (the adult equivalent of the mesenchyme) to produce new skin cells or other tissues when needed – for example, to replace skin damaged in a burn. And his team is investigating the use of ovarian stem cells instead of SSCs to see if the same results can be obtained with ovarian tissue.

This work was supported by the Billie A. Field Endowment, the U. of I., and the National Institutes of Health.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>