Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Male-female ring finger proportions tied to sex hormones in embryo; may offer health insights

06.09.2011
Why men's ring fingers are longer than their index fingers

Biologists at the University of Florida have found a reason why men's ring fingers are generally longer than their index fingers — and why the reverse usually holds true for women.

The finding could help medical professionals understand the origin of behavior and disease, which may be useful for customizing treatments or assessing risks in context with specific medical conditions.

Writing this week in the Proceedings of the National Academy of Sciences, developmental biologists Martin Cohn, Ph.D., and Zhengui Zheng, Ph.D., of the Howard Hughes Medical Institute and the department of molecular genetics and microbiology at the UF College of Medicine, show that male and female digit proportions are determined by the balance of sex hormones during early embryonic development. Differences in how these hormones activate receptors in males and females affect the growth of specific digits.

The discovery provides a genetic explanation for a raft of studies that link finger proportions with traits ranging from sperm counts, aggression, musical ability, sexual orientation and sports prowess, to health problems such as autism, depression, heart attack and breast cancer.

It has long been suspected that the digit ratio is influenced by sex hormones, but until now direct experimental evidence was lacking.

"The discovery that growth of the developing digits is controlled directly by androgen and estrogen receptor activity confirms that finger proportions are a lifelong signature of our early hormonal milieu," Cohn said. "In addition to understanding the basis of one of the more bizarre differences between the sexes, it's exciting to think that our fingers can tell us something about the signals that we were exposed to during a short period of our time in the womb. There is growing evidence that a number of adult diseases have fetal origins. With the new data, we've shown that that the digit ratio reflects one's prenatal androgen and estrogen activity, and that could have some explanatory power."

Cohn and Zheng, also members of the UF Genetics Institute, found that the developing digits of male and female mouse embryos are packed with receptors for sex hormones. By following the prenatal development of the limb buds of mice, which have a digit length ratio similar to humans, the scientists controlled the gene signaling effects of androgen — also known as testosterone — and estrogen.

Essentially, more androgen equated to a proportionally longer fourth digit. More estrogen resulted in a feminized appearance. The study uncovered how these hormonal signals govern the rate at which skeletal precursor cells divide, and showed that different finger bones have different levels of sensitivity to androgen and estrogen.

Since Roman times, people have associated the hand's fourth digit with the wearing of rings. In many cultures, a proportionally longer ring finger in men has been taken as a sign of fertility.

"I've been struggling to understand this trait since 1998," said John T. Manning, Ph.D., a professor at Swansea University in the United Kingdom, who was not involved in the current research. "When I read this study, I thought, thank goodness, we've attracted the attention of a developmental biologist with all the sophisticated techniques of molecular genetics and biology."

In dozens of papers and two books, including the seminal "Digit Ratio" in 2002, Manning has studied the meaning of the relative lengths of second and fourth digits in humans, known to scientists as the 2D:4D ratio.

"When Zheng and Cohn blocked testosterone receptors, they got a female digit ratio," Manning said. "When they added testosterone they got super male ratios, and when they added estrogen, super female ratios. And they've provided us with a list of 19 genes that are sensitive to prenatal testosterone and prenatal estrogen.

"I find this completely convincing and very useful," Manning said. "We can now be more focused in our examination of the links between digit ratio and sex-dependent behaviors, diseases of the immune system, cardiovascular disorders and a number of cancers."

Cohn, whose uses the tools of genetics, genomics and molecular biology to study limb development, said his lab began studying the digit ratios after Zheng became determined to find an explanation.

"He suggested that the 2D:4D ratio would be an interesting question, and I have to admit to being skeptical," Cohn said. "When he came back with the initial results, I was blown away. We looked at each others hands, then got busy planning the next experiment."

The National Institute of Environmental Health Sciences and the Howard Hughes Medical Institute supported this research.

John Pastor | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>