Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Malaria Vaccine Depends On … Mosquito Bites?

17.02.2011
The same menace that spreads malaria – the mosquito bite – could help wipe out the deadly disease, according to researchers working on a new vaccine at Tulane University.

The PATH Malaria Vaccine Initiative (MVI), established in 1999 through a grant from the Bill & Melinda Gates Foundation, announced today a collaboration with Tulane University School of Public Health and Tropical Medicine and India’s Gennova Biopharmaceuticals Ltd. to produce and test a novel vaccine that aims to inoculate mosquitoes when they bite people.

The vaccine would work by triggering an immune response in people so they produce antibodies that target a protein the malaria parasite needs to reproduce within a mosquito.

Malaria, which kills nearly 800,000 people every year worldwide, is caused by a microscopic parasite that alternates between human and mosquito hosts at various stages of its lifecycle. Once a mosquito bites a vaccinated person, the antibodies would neutralize the protein essential for malaria parasite’s reproduction, effectively blocking the parasite’s – and the mosquito’s – ability to infect others.

The vaccine relies on a protein — known as Pfs48/45 — which is very difficult to synthetically produce, says Nirbhay Kumar, professor of tropical medicine at Tulane.

“With MVI’s support we can now work with Gennova to produce sufficient quantity of the protein and develop a variety of vaccine formulations that can be tested in animals to determine which one give us the strongest immune response,” Kumar says.

Such transmission blocking vaccines, though not yet widely tested in humans, are attracting widespread interest due to their potential to be used in conjunction with more traditional malaria vaccines and other interventions—such as malaria drugs and bed nets—to make gradual elimination and even eradication of the disease a reality.

“We’re investing in developing transmission blocking malaria vaccines to support two long-term goals: introducing an 80 percent efficacious malaria vaccine by the year 2025 and eventually eradicating malaria altogether,” says Dr. Christian Loucq, director of MVI. “A vaccine that breaks the cycle of malaria transmission will be important to our success.”

Keith Brannon | Newswise Science News
Further information:
http://tulane.edu

Further reports about: Malaria Vaccine immune response malaria parasite malaria vaccine mosquito

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>