Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On malaria struggle, baboons and humans have similar stories to tell

26.06.2009
Evolutionarily speaking, baboons may be our more distant cousins among primates. But when it comes to our experiences with malaria over the course of time, it seems the stories of our two species have followed very similar plots.

In humans, subtle variation in one particular gene that controls whether a protein on the surface of red blood cells gets made or not literally spells the difference between susceptibility or resistance to one form of malaria. That's because the blood protein serves as the entry point for Plasmodium vivax, one of several malaria-causing parasites that infect humans.

Now, researchers at the Duke Institute for Genome Sciences & Policy report that variation in precisely the same regulatory gene also influences baboons' chances of getting sick, by ratcheting their susceptibility to another, closely related parasite up or down.

"It's a nice example of how – in the vastness of the genome – the same gene was modified in the same way in two different species to produce the same kind of resistance," says Greg Wray, director of the IGSP's Center for Evolutionary Genomics. "That's a pretty remarkable thing when you think of all the different ways malaria resistance might have evolved."

The findings, which appeared online in Nature on June 24, also mark a turning point in primate research: they are the first to connect any functionally important genetic variation in wild primates to complex, real-life consequences for the animals.

The yellow baboons in question live in Kenya's Amboseli National Park and have been the subject of ongoing observation for nearly 40 years, making them one of the best-studied wild mammal populations in the world from a behavioral and life history standpoint.

"It used to be that our work was limited to 'skin-out' biology," says Susan Alberts, an associate professor of biology and IGSP member who has been recording the habits of the baboons for the last 25 years. Today, thanks to a growing library of sequenced primate genomes including our own, scientists can begin to delve deeper.

Graduate student Jenny Tung spent three summers out on the East African savanna, watching the baboons, collecting their DNA-laden feces, and with the help of an expert team of Kenyan field assistants, very carefully drawing blood from darted animals. Successfully darting baboons is no small feat, Tung said. You have to be within meters of the animal you are targeting, and at the same time make sure that none of the baboons catch you in the act. If they did, it would send the troop running and screaming and, in technical terms, "really mess up the field data." In the evenings, Tung processed and stored her hard-won samples in a makeshift refrigerator before shipping them off to Duke.

Once back at the lab, Tung found something in those blood samples that came as a surprise despite all the years of study. More than half of the Amboseli baboons -- some 60 percent -- were infected with the malaria-like parasite known as Hepatocystis.

"We had no idea so many of them were carrying this parasite," Alberts says. For years, researchers have tracked the baboons for any signs of injury or illness. But although the infection probably compromises the animals, they don't develop cyclical fever spikes or other immediately obvious symptoms like humans with malaria do.

In search of a genetic basis for differences in the baboons' vulnerability to infection, the researchers zeroed in on the DNA sequence surrounding the DARC gene, the same region that has been traced to malaria protection among people. Although the specifics differ from those in humans, they found that a single letter change to the genetic code -- a switch from an A to a G -- lends some baboons the ability to better fend off infection. In fact, they show, one G is good, but two are even better.

Further analysis of the baboons' blood and in cell culture confirmed that the variants influence infection rates through changes in the activity of the DARC gene. Comparison of the Amboseli baboon sequences to two other populations also showed that the DNA sequence has undergone a relatively rapid rate of evolutionary change, the mark of natural selection for malaria resistance.

The newfound parallels between baboons and humans bring the long history of conflict between parasite and host into high relief. "It's a struggle out there," Alberts says. "We often think of malaria as a contemporary problem, but it's a deep part of our history."

The study also shows the power of coupling genomics with dedicated fieldwork. "Part of what we want to do is push the envelope and show that this is doable," Wray says. With the proof of principle in hand, the next big challenge is to begin to unravel the genomic differences that may be responsible for fuzzier behavioral traits, such as social status or aggression, he added.

"It's getting easier and easier to generate genetic data," Tung says. "But it's never going to be easy to have long-term field data -- especially for primates. It takes years and years before you see the fruit of those labors. We're just at the point where it's going to really start paying off."

Collaborators on the study include Alexander Primus, Andrew Bouley and Tonya Severson, all of Duke. The work was funded by the National Science Foundation, the American Society of Primatologists, Duke University, the Duke chapter of Sigma Xi, and the Duke Institute for Genome Sciences & Policy.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>