Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Malaria Researchers Identify New Mosquito Virus

Researchers at the Johns Hopkins Bloomberg School of Public Health’s Malaria Research Institute have identified a previously unknown virus that is infectious to Anopheles gambiae—the mosquito primarily responsible for transmitting malaria.

According to the researchers, the discovered virus could one day be used to pass on new genetic information to An. gambiae mosquitoes as part of a strategy to control malaria, which kills over one million people worldwide each year. The study was published August 22 online in the peer-reviewed open access journal PLoS Pathogens.

The virus, AgDNV, is a densonucleosis virus or “densovirus,” which are common to mosquitoes and other insects, but do not infect vertebrate animals such as humans. Although the virus does not appear to harm the mosquitoes, the researchers determined it is highly infectious to mosquito larvae and is easily passed on to the adults.

According to Jason Rasgon, PhD, senior author of the study, the discovery came about serendipitously while the research team was conducting experiments to determine whether Wolbachia bacteria could be used to infect An. gambiae mosquito cells. During the analysis, Xiaoxia Ren, a postdoctoral fellow with Johns Hopkins Malaria Research Institute, noticed an “artifact,” that appeared as a prominent band in the gel used to detect the bacteria.

“Finding artifacts such as this one during experiments is not uncommon, but we decided to investigate this one further since we kept observing it over and over. When we sequenced it we were surprised to learn that we had found a new virus,” explained Rasgon, an assistant professor with the Bloomberg School’s W. Harry Feinstone Department of Molecular Microbiology and Immunology.

According to Rasgon, the virus could be potentially altered to kill the mosquito or make An. gambiae incapable of transmitting malaria. To test the concept, the research team successfully used altered AgDNV to express harmless green fluorescent protein in the adult mosquitoes which could be easily spotted under the microscope.

“In theory, we could use this virus to produce a lethal toxin in the mosquito or instruct the mosquito to die after 10 days, which is before it can transmit the malaria parasite to humans. However, these concepts are many years away,” said Rasgon.

Tim Parsons | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>