Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Malaria protection in chimpanzees

Researchers found that adult wild chimpanzees have developed a certain immunity against malaria parasites

Wild great apes are widely infected with malaria parasites. Yet, nothing is known about the biology of these infections in the wild. Using faecal samples collected from wild chimpanzees, an international team of researchers from the Max Planck Institute for Evolutionary Anthropology in Leipzig and the Robert Koch Institute in Berlin has now investigated the effect of the animals’ age on malaria parasite detection rates.

Group of chimpanzees, Taï National Park, Cote d’Ivoire. © Sonja Metzger

The data show a strong association between age and malaria parasite positivity, with significantly lower detection rates in adult chimpanzees. This suggests that, as in humans, individuals reaching adulthood have mounted an effective protective immunity against malaria parasites.

In malaria regions the parasite prevalence in the human body as well as malaria-related morbidity and mortality decrease with age. This reflects the progressive mounting of a protective immunity. Researchers of the Max Planck Institute for Evolutionary Anthropology and the Robert Koch-Institute now present a study which addresses the age distribution of malaria parasite infection in a group of wild chimpanzees.

To this end the researchers collected 141 faecal samples from seven female and 12 male wild chimpanzees from Taï National Park, Cote d’Ivoire. At time of sampling the animals’ ages ranged between 3 and 47 years. The researchers extracted DNA from the faecal samples, analysed it and so identified the malaria parasite-positive samples. “In the course of this 2-month study almost every individual chimpanzee of the group was found positive at least once”, says Hélène De Nys of the Max Planck Institute for Evolutionary Anthropology and the Robert Koch-Institute. “Our data further suggest that at every point in time at least one individual of this chimpanzee group is infected”.

Further analyses showed that malaria parasites were detected more often in younger than in older animals. Whether these were female or male, however, did not make a difference. “This is the first indication that epidemiological characteristics of malaria parasite infection in wild chimpanzee populations might be comparable to those in human populations”, says Roman Wittig of the Max Planck Institute for Evolutionary Anthropology. “As in humans, the development of acquired immunity likely plays an important role in wild chimpanzees as well”.

Throughout this process, malaria parasites might also contribute directly to decimating young chimpanzees. During analyses performed on more than 30 dead adult chimpanzees from the same community malaria could be excluded as the cause of death. For young chimpanzees, however, the question remains open. While it is known that mortality in young chimpanzees is high, their bodies are rarely accessible. This is because they are less likely to be found and because their carcasses are carried for several days by their mothers.

“Even though at this stage, we cannot pinpoint pathogenicity of malaria parasites found in wild chimpanzees, our results suggest a continuous exposure of this population, leading to the development of a certain resistance to infection”, says Fabian Leendertz of the Robert Koch-Institute.


Dr. Roman Wittig
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-204
Email: wittig@­
Dr. Fabian Leendertz
Robert Koch Institute
Phone: +49 30 18754-2592
Email: LeendertzF@­
Sandra Jacob
Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122
Fax: +49 341 3550-119
Email: jacob@­

Original publication
Hélène M. De Nys, Sébastien Calvignac-Spencer, Ursula Thiesen, Christophe Boesch, Roman M. Wittig, Roger Mundry & Fabian H. Leendertz
Age-related effects on malaria parasite infection in wild chimpanzees
Biology Letters, 29 May 2013, DOI:

Dr. Roman Wittig | Max-Planck-Institute
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>