Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria parasite manipulates host's scent

01.07.2014

Malaria parasites alter the chemical odor signal of their hosts to attract mosquitos and better spread their offspring, according to researchers, who believe this scent change could be used as a diagnostic tool.

"Malaria-infected mice are more attractive to mosquitos than uninfected mice," said Mark Mescher, associate professor of entomology, Penn State. "They are the most attractive to these mosquito vectors when the disease is most transmissible."

Malaria in humans and animals is caused by parasites and can be spread only by an insect vector, a mosquito. The mosquito ingests the parasite with a blood meal, and the parasite creates the next generation in the mosquito's gut. These nascent parasites travel to the mosquito's salivary glands and are passed to the host during the next meal.

"We were most interested in individuals that are infected with the malaria parasite but are asymptomatic," said Consuelo De Moraes, professor of entomology, Penn State. "Asymptomatic people can still transmit the disease unless they are treated, so if we can identify them we may be able to better control the disease."

The researchers found that using a mouse malaria model, the mosquitos were more attracted to infected mice, even when the mice were otherwise asymptomatic. They report their findings today (June 30) in the Proceedings of the National Academy of Sciences.

The researchers, who also included Nina M. Stanczyk, former postdoctoral fellow; Heike S. Betz, research technologist, entomology; Hannier Pulido, graduate student in entomology; Derek G. Sim, technician, senior research assistant, biology; and Andrew F. Read, Alumni Professor in the Biological Sciences and Professor of Entomology, all of Penn State, also showed that several individual compounds whose concentrations were altered by malaria infection contributed to the increase in attractiveness to mosquitoes.

To eliminate other factors such as carbon dioxide production and body temperature as an attractant, the researchers extracted the body scent from the mice and showed that the changes in the scent alone altered the attraction of mosquitoes.

"Mosquitos wouldn't opt to carry the malaria parasite because it isn't good for the mosquito," said De Moraes. "Probably the parasite is not only manipulating the mice to alter their scent, but the mosquitos to be more attracted to the infected scent."

While the mosquitos were not attracted to mice that had acute malaria symptoms, they were particularly attracted to mice during a period of recovery when the transmissible stage of the malaria parasite was present at high levels.

In regions where malaria is prevalent, significant numbers of people harbor asymptomatic infections but remain able to transmit the disease to others. The researchers hope this altered scent profile might help to identify those needing treatment.

"If this holds true in humans, we may be able to screen humans for the chemical scent profile using this biomarker to identify carriers," said Mescher.

###

The Bill and Melinda Gates Foundation Grand Challenges Exploration supported this work.

A'ndrea Elyse Messer | Eurek Alert!
Further information:
http://www.psu.edu

Further reports about: concentrations dioxide malaria mosquito parasite temperature

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>