Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria: New details about an old pathogen

04.07.2014

A previously unknown type of gene regulation involving the malaria pathogen has been discovered by an international team of researchers. Scientists from the University of Würzburg were among the party. It remains to be seen whether the discovery will lead to the development of new drugs.

According to current estimates, there are more than 200 million people worldwide suffering from malaria, and roughly one million die each year from this disease. Symptoms include fever, painful joints, headache, vomiting, and seizures. In more serious cases the patient’s organs are also affected, and the disease is usually fatal if left untreated in such cases. The pathogen Plasmodium falciparum is transmitted by mosquitoes, particularly in tropical and subtropical areas.

Global search for new drugs

There are already a whole range of drugs to treat malaria, but these do not nearly meet all the requirements asked of them. Either they are too expensive for large-scale use in third-world countries or they have side-effects that are too severe, or the pathogens have become resistant to them. So, for this reason, researchers throughout the world are searching for new targets in the pathogen’s development cycle.

... more about:
»DNA »Malaria »Plasmodium »RNA »blood »genes »mechanism »mosquito

At the University of Würzburg, too, research has focused on Plasmodium falciparum for many years at the Center for Infection Research (ZINF). Biochemist Dr. Nicolai Siegel has been running a junior research group there for the last two years; together with scientists from Shanghai and Paris he has now discovered some surprising details in the pathogen’s reproductive cycle. The researchers present their work in the current issue of Nature.

A trick protects the pathogen from the immune system

“Malaria pathogens have an extremely effective trick for protecting themselves from being detected and fought by a sufferer’s immune system,” says Nicolai Siegel. Once they have infested the red blood corpuscles of their “victim”, they produce proteins that adhere to the surface of the cells as receptors. The immune system could actually easily detect these and use them as a point of attack.

“But the pathogen has a total of 60 different genes that produce such surface receptors,” explains Siegel. Fifty-nine of these are always inactive, leaving only one active – and the pathogen can switch between them at will. “This makes it so difficult for the immune response.” It is still not known how the pathogen achieves such alternation. The scientific name for this gene family is var genes. And the malaria infection is more or less severe depending on which “family member” is presently active. “We know, for example, that in the cases in which malaria is fatal A-type var genes are expressed particularly strongly,” says Siegel.

An unknown mechanism of gene regulation

The research team has now discovered a previously unknown mechanism for how the malaria parasites control this gene family. At the heart of this process is a special exonuclease protein with the scientific name PfRNase II. Exonucleases are enzymes that are called into action whenever the genetic material in a cell in the form of DNA and RNA is copied or degraded. They are capable, for example, of detecting the inclusion of a false “building block” and removing this from the DNA. They can also break down an existing strand of DNA or RNA while a new strand is formed. In so doing, they also prevent the corresponding proteins from being created.

The newly discovered exonuclease performs a very specific role in the malaria pathogen: “We genetically modified it and then noted that a huge number of genes from the var family were upregulated,” explains Siegel. It appears, therefore, that PfRNase II controls the entire group of genes that determine whether a case of malaria will follow a more severe course or prove to be rather mild. To put this another way, a drug to fight malaria should ensure that the newly discovered exonuclease is as active as possible in the pathogen. This would largely silence the genes responsible for its virulence.

The stages in the pathogen’s development

The development of the pathogen Plasmodium falciparum in humans is extremely intricate and spans several stages. If a human is bitten by an infected mosquito, malaria pathogens migrate through the bloodstream to the liver in a matter of minutes. There they remain for some time, reproducing asexually. After about a week, they return to the blood and attack the red blood corpuscles, triggering the typical malaria fever spikes in the sufferer.

It is not until the single-celled organisms become stressed that they switch to a new stage in their development. Stress here means that too many of them are moving around inside the bloodstream, the body reacts with an immune response, or a drug launches its attack. In all these situations, some cells switch to sexual reproduction. If the sufferer is bitten again, the cells enter the mosquito and settle in its intestine, where they mature into gametes of different sizes, which in principle are comparable to egg and sperm cells in humans. These merge together, leave the intestine, and, after a further asexual reproductive phase, migrate to the mosquito’s salivary glands. When the mosquito bites another human, the Plasmodium parasites enter the bloodstream again and the game starts over.

Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria. Qingfeng Zhang, T. Nicolai Siegel, Rafael M. Martins, FeiWang, Jun Cao, Qi Gao, Xiu Cheng, Lubin Jiang, Chung-Chau Hon, Christine Scheidig-Benatar, Hiroshi Sakamoto, Louise Turner, Anja T. R. Jensen, Aurelie Claes, Julien Guizetti, Nicholas A. Malmquist & Artur Scherf, Nature, published online 29 June 2014. doi:10.1038/nature13468

Contact

Dr. T. Nicolai Siegel, T: +49 (0)931 31-88499, nicolai.siegel@uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: DNA Malaria Plasmodium RNA blood genes mechanism mosquito

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>