Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria medicine chloroquine inhibits tumor growth and metastases

12.08.2014

A recent study by investigators at VIB and KU Leuven has demonstrated that chloroquine also normalizes the abnormal blood vessels in tumors.

This blood vessel normalization results in an increased barrier function on the one hand -- thereby blocking cancer cell dissemination and metastasis -- and in enhanced tumor perfusion on the other hand, which increases the response of the tumor to chemotherapy.

The anti-cancer effect of the antimalarial agent chloroquine when combined with conventional chemotherapy has been well documented in experimental animal models. To date, it was assumed that chloroquine increases the sensitivity of cancer cells to chemotherapy by means of a direct effect on the cancer cells.

However, a recent study by investigators at VIB and KU Leuven has demonstrated that chloroquine also normalizes the abnormal blood vessels in tumors. This blood vessel normalization results in an increased barrier function on the one hand – thereby blocking cancer cell dissemination and metastasis– and in enhanced tumor perfusion on the other hand, which increases the response of the tumor to chemotherapy.

Chloroquine is a well-known medicine with a good safety profile that has been in use since World War 2 for the treatment of malaria and certain auto-immune diseases, including rheumatoid arthritis. More recently, chloroquine has also been used in anti-cancer treatment. Chloroquine blocks autophagy, a process that cancer cells use to survive to anti-cancer treatments. Therefore, blocking autophagy would reduce the resistance of the cancer cells to chemotherapy.

Normalization of abnormal tumor blood vessels

Hannelore Maes from the team of Patrizia Agostinis (KU Leuven), together with Anna Kuchnio from the team of Peter Carmeliet (VIB-KU Leuven) have started a study to explain how chloroquine can strengthen the effect of anti-cancer treatments.

"Although it is assumed that chloroquine strengthens anti-cancer treatment by blocking autophagy, there is little in vivo evidence that this is the only way in which chloroquine works. In this study, we found that chloroquine not only has an effect on the growth of the cancer cells, but also makes the tumor environment less aggressive by normalizing the abnormal blood vessels in the tumor", says Patrizia Agostinis.

Peter Carmeliet: "Blood vessel normalization results in improved tumor perfusion. This reduces the aggressive nature of the cancer cells and means that the anti-cancer medicines are better able to reach the cancer cells, which makes chemotherapy more effective. In addition, tumor blood vessel normalization also increases the barrier function of the blood vessels, which reduces the access of cancer cells to the circulation – the most important transport system for the spreading of cancer cells to other tissues. Therefore, chloroquine can nip the metastatic spreading of cancer cells in the bud, which is the most important therapeutic goal in any tumor treatment."

Disadvantages do not outweigh the benefits – the impact of this study on the use of chloroquine in anti-cancer treatment

This study forms a new rationale for the use of chloroquine in anti-cancer treatment. With a view to clinical studies (tests on humans) it is important to note that the effects on the tumor vasculature were even observed at chloroquine concentrations that had little effect on autophagy in the cancer cells. This sheds new light on the therapeutic schedule for combination therapy with chloroquine, which could result in decreased toxicity. In other words, the same "old" medicine simultaneously targets the cancer cells themselves and the blood vessels with great efficiency.

Research teams

This research was conducted by the team of Patrizia Agostinis, Department of Cellular and Molecular Medicine, KU Leuven in collaboration with the team of Peter Carmeliet from the VIB Vesalius Research Center, KU Leuven.

Sooike Stoops | Eurek Alert!
Further information:
http://www.vb.be

More articles from Life Sciences:

nachricht Designing ultrasound tools with Lego-like proteins
26.08.2016 | California Institute of Technology

nachricht Allergy Research: Response to House Dust Mites is Age-Dependent
26.08.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Designing ultrasound tools with Lego-like proteins

26.08.2016 | Life Sciences

Allergy Research: Response to House Dust Mites is Age-Dependent

26.08.2016 | Life Sciences

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>