Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria medicine chloroquine inhibits tumor growth and metastases

12.08.2014

A recent study by investigators at VIB and KU Leuven has demonstrated that chloroquine also normalizes the abnormal blood vessels in tumors.

This blood vessel normalization results in an increased barrier function on the one hand -- thereby blocking cancer cell dissemination and metastasis -- and in enhanced tumor perfusion on the other hand, which increases the response of the tumor to chemotherapy.

The anti-cancer effect of the antimalarial agent chloroquine when combined with conventional chemotherapy has been well documented in experimental animal models. To date, it was assumed that chloroquine increases the sensitivity of cancer cells to chemotherapy by means of a direct effect on the cancer cells.

However, a recent study by investigators at VIB and KU Leuven has demonstrated that chloroquine also normalizes the abnormal blood vessels in tumors. This blood vessel normalization results in an increased barrier function on the one hand – thereby blocking cancer cell dissemination and metastasis– and in enhanced tumor perfusion on the other hand, which increases the response of the tumor to chemotherapy.

Chloroquine is a well-known medicine with a good safety profile that has been in use since World War 2 for the treatment of malaria and certain auto-immune diseases, including rheumatoid arthritis. More recently, chloroquine has also been used in anti-cancer treatment. Chloroquine blocks autophagy, a process that cancer cells use to survive to anti-cancer treatments. Therefore, blocking autophagy would reduce the resistance of the cancer cells to chemotherapy.

Normalization of abnormal tumor blood vessels

Hannelore Maes from the team of Patrizia Agostinis (KU Leuven), together with Anna Kuchnio from the team of Peter Carmeliet (VIB-KU Leuven) have started a study to explain how chloroquine can strengthen the effect of anti-cancer treatments.

"Although it is assumed that chloroquine strengthens anti-cancer treatment by blocking autophagy, there is little in vivo evidence that this is the only way in which chloroquine works. In this study, we found that chloroquine not only has an effect on the growth of the cancer cells, but also makes the tumor environment less aggressive by normalizing the abnormal blood vessels in the tumor", says Patrizia Agostinis.

Peter Carmeliet: "Blood vessel normalization results in improved tumor perfusion. This reduces the aggressive nature of the cancer cells and means that the anti-cancer medicines are better able to reach the cancer cells, which makes chemotherapy more effective. In addition, tumor blood vessel normalization also increases the barrier function of the blood vessels, which reduces the access of cancer cells to the circulation – the most important transport system for the spreading of cancer cells to other tissues. Therefore, chloroquine can nip the metastatic spreading of cancer cells in the bud, which is the most important therapeutic goal in any tumor treatment."

Disadvantages do not outweigh the benefits – the impact of this study on the use of chloroquine in anti-cancer treatment

This study forms a new rationale for the use of chloroquine in anti-cancer treatment. With a view to clinical studies (tests on humans) it is important to note that the effects on the tumor vasculature were even observed at chloroquine concentrations that had little effect on autophagy in the cancer cells. This sheds new light on the therapeutic schedule for combination therapy with chloroquine, which could result in decreased toxicity. In other words, the same "old" medicine simultaneously targets the cancer cells themselves and the blood vessels with great efficiency.

Research teams

This research was conducted by the team of Patrizia Agostinis, Department of Cellular and Molecular Medicine, KU Leuven in collaboration with the team of Peter Carmeliet from the VIB Vesalius Research Center, KU Leuven.

Sooike Stoops | Eurek Alert!
Further information:
http://www.vb.be

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>