Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Malaria medication may help against one type of Frontotemporal Dementia

Scientists at the German Center for Neurodegenerative Diseases (DZNE) and the Ludwig-Maximilians Universität Munich have found a promising approach for a possible treatment of so-called frontotemporal dementia, an Alzheimer-like form of dementia.

Frontotemporal dementia is caused by a breakdown of nerve cells in the frontal and temporal region of the brain (fronto-temporal lobe), which leads to, among other symptoms, a change in personality and behavior.

The cause of some forms of frontotemporal dementia is a genetically determined reduction of a hormone-like growth factor, progranulin. Scientists arround Dr. Anja Capell and Prof. Christian Haass have now shown that various drugs that are already on the market to treat malaria, angina pectoris or heart rhythm disturbances can increase the production of progranulin.

Accordingly, these drugs are good candidates for treatment of this specific form of frontotemporal dementia. The work will be published in the online edition of the scientific journal "Journal of Neuroscience on February 2nd, 2011.

Progranulin is needed in the human brain as a protective factor for sensitive nerve cells, too little progranulin therefore results in a progressive neuronal cell death. As for almost every other gene, there are also two copies of the progranulin gene in the cell. In patients with progranulin dependent frontotemporal dementia, one of the two copies is defective, leading to a 50% reduction in progranulin levels.

To rescue the lack of progranulin, the Munich researchers tested various substances for their ability to stimulate the remaining progranulin production and identified a drug called bafilomycin (BafA1). They then examined the molecular mechanism underlying the impact of BafA1 on progranulin more closely. Growth factors such as progranulin are produced in cellular membrane inclusions, known as vesicles. BafA1 has an alkalizing effect on these vesicles: After administration of BafA1 the interior of the vesicles is less acidic – and this increases the production of progranulin.

This observation encouraged the researchers to investigate further alkalizing substances for their ability to raise progranulin levels. Among the substances that passed the test were three drugs that are already on the market to treat various diseases: a medication for angina pectoris (bepridil), one for heart rhythm problems (amiodarone) and the widely used malaria drug chloroquine. Chloroquine increased the progranulin level not only in experiments with mouse cells to normal, but also in cells from patients with the defective progranulin gene.

In a clinical study in collaboration with the University of London, the team of Prof. Haass and Dr. Capell will now investigate whether chloroquine actually helps against progranulin dependent frontotemporal dementia. The human studies can be started very soon, as chloroquine has been used on countless patients, so that serious side effects are not to be expected. Even though the Munich scientists are optimistic, Prof. Haass warns against exaggerated hopes. “Experience shows that the step from cell and animal models to the patient is always connected with considerable difficulties. It will take several years until we know, whether chloroquine can be used as therapy for progranulin dependent frontotemporal dementia,” says Haass.

Original publication:
Capell, A., Liebscher, S., Fellerer, K., Brouwers, N., Willem, M., Lammich, S., Gijselinck, I., Bittner, T., Carlson, A.M., Sasse, F., Kunze, B., Steinmetz, H., Jansen, R., Dormann, D., Sleegers, K., Cruts, M., Herms, J., Van Broeckhoven, C., Haass, C. (2011). Rescue of Progranulin Deficiency Associated with Frontotemporal Lobar Degeneration by Alkalizing Reagents and Inhibition of Vacuolar ATPase. J. Neurosci., published online on February 2nd, 2011. DOI:10.1523/JNEUROSCI.5757-10.2011
Further information:
Prof. Dr. Dr. h.c. Christian Haass or Dr. Anja Capell
DZNE - German Center for Neurodegenerative Diseases, Munich
& Adolf Butenandt-Institute, Biochemistry, Ludwig-Maximilians University Munich
Schillerstrasse 44, 80336 München
Phone: (+49-89) 2180 75 - 472
Fax: (+49-89) 2180 75 - 415
E-Mail: or
Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press and Public Relations
Phone: +49 228 43302 -263
Mobile: +49 173 - 5471350

Sonja Jülich-Abbas | idw
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>