Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria medication may help against one type of Frontotemporal Dementia

02.02.2011
Scientists at the German Center for Neurodegenerative Diseases (DZNE) and the Ludwig-Maximilians Universität Munich have found a promising approach for a possible treatment of so-called frontotemporal dementia, an Alzheimer-like form of dementia.

Frontotemporal dementia is caused by a breakdown of nerve cells in the frontal and temporal region of the brain (fronto-temporal lobe), which leads to, among other symptoms, a change in personality and behavior.

The cause of some forms of frontotemporal dementia is a genetically determined reduction of a hormone-like growth factor, progranulin. Scientists arround Dr. Anja Capell and Prof. Christian Haass have now shown that various drugs that are already on the market to treat malaria, angina pectoris or heart rhythm disturbances can increase the production of progranulin.

Accordingly, these drugs are good candidates for treatment of this specific form of frontotemporal dementia. The work will be published in the online edition of the scientific journal "Journal of Neuroscience on February 2nd, 2011.

Progranulin is needed in the human brain as a protective factor for sensitive nerve cells, too little progranulin therefore results in a progressive neuronal cell death. As for almost every other gene, there are also two copies of the progranulin gene in the cell. In patients with progranulin dependent frontotemporal dementia, one of the two copies is defective, leading to a 50% reduction in progranulin levels.

To rescue the lack of progranulin, the Munich researchers tested various substances for their ability to stimulate the remaining progranulin production and identified a drug called bafilomycin (BafA1). They then examined the molecular mechanism underlying the impact of BafA1 on progranulin more closely. Growth factors such as progranulin are produced in cellular membrane inclusions, known as vesicles. BafA1 has an alkalizing effect on these vesicles: After administration of BafA1 the interior of the vesicles is less acidic – and this increases the production of progranulin.

This observation encouraged the researchers to investigate further alkalizing substances for their ability to raise progranulin levels. Among the substances that passed the test were three drugs that are already on the market to treat various diseases: a medication for angina pectoris (bepridil), one for heart rhythm problems (amiodarone) and the widely used malaria drug chloroquine. Chloroquine increased the progranulin level not only in experiments with mouse cells to normal, but also in cells from patients with the defective progranulin gene.

In a clinical study in collaboration with the University of London, the team of Prof. Haass and Dr. Capell will now investigate whether chloroquine actually helps against progranulin dependent frontotemporal dementia. The human studies can be started very soon, as chloroquine has been used on countless patients, so that serious side effects are not to be expected. Even though the Munich scientists are optimistic, Prof. Haass warns against exaggerated hopes. “Experience shows that the step from cell and animal models to the patient is always connected with considerable difficulties. It will take several years until we know, whether chloroquine can be used as therapy for progranulin dependent frontotemporal dementia,” says Haass.

Original publication:
Capell, A., Liebscher, S., Fellerer, K., Brouwers, N., Willem, M., Lammich, S., Gijselinck, I., Bittner, T., Carlson, A.M., Sasse, F., Kunze, B., Steinmetz, H., Jansen, R., Dormann, D., Sleegers, K., Cruts, M., Herms, J., Van Broeckhoven, C., Haass, C. (2011). Rescue of Progranulin Deficiency Associated with Frontotemporal Lobar Degeneration by Alkalizing Reagents and Inhibition of Vacuolar ATPase. J. Neurosci., published online on February 2nd, 2011. DOI:10.1523/JNEUROSCI.5757-10.2011
Further information:
Prof. Dr. Dr. h.c. Christian Haass or Dr. Anja Capell
DZNE - German Center for Neurodegenerative Diseases, Munich
& Adolf Butenandt-Institute, Biochemistry, Ludwig-Maximilians University Munich
Schillerstrasse 44, 80336 München
Germany
Phone: (+49-89) 2180 75 - 472
Fax: (+49-89) 2180 75 - 415
E-Mail: chaass@med.uni-muenchen.de or acapell@med.uni-muenchen.de
Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press and Public Relations
Phone: +49 228 43302 -263
Mobile: +49 173 - 5471350
Email: katrin.weigmann@dzne.de

Sonja Jülich-Abbas | idw
Further information:
http://www.biochemie.abi.med.lmu.de
http://www.dzne.de

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>