Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria Immunity Trigger Found for Multiple Mosquito Species

16.03.2009
Researchers at the Johns Hopkins Bloomberg School of Public Health have for the first time identified a molecular pathway that triggers an immune response in multiple mosquito species capable of stopping the development of Plasmodium falciparum — the parasite that causes malaria in humans.

By silencing the gene, caspar, the researchers were able to block the development of the malaria-causing parasite in Anopheles gambiae, A. stephensi and A. albimanus mosquitoes—three mosquito species that spread malaria in Africa, Asia and the Americas. Their findings were published March 13 in PLoS Pathogens.

According to the study, the transcription factor Rel 2 is a key molecule involved in regulating several potent anti-Plasmodium defense genes that attack the parasite in the mosquito gut. Rel 2 is activated by the immune deficiency pathway (Imd) which, in turn, is negatively regulated by the caspar gene; when caspar is silenced the Rel 2 is activated. The researchers found that silencing of the caspar gene through the manipulation of gene expression resulted in mosquitoes that successfully blocked the development of Plasmodium falciparum in the gut tissue. Silencing the gene known as cactus, which is part of another pathway called Toll, was shown to have similar effect in controlling the development of Plasmodium berghei, which causes malaria in rodents.

“When a mosquito is feeding on malaria-infected blood, the parasite will be recognized by the mosquito’s immune system through receptors that then start the immune response. In the wild, this response is believed to occur too late to mount an efficient immune defense that would kill all parasites. At least a few Plasmodia will successfully develop inside the mosquito and enable transmission of malaria,” explained George Dimopoulos, PhD, senior author of the study and associate professor at the Johns Hopkins Malaria Research Institute. “In the lab we activated this immune response in advance of infection, giving the mosquito a head start in defeating the invading parasite.”

Dimopoulos and his colleagues Lindsey Graver and Yuemei Dong also found that Rel 2 activation did not affect the survival and egg laying fitness of the modified mosquitoes.

“This came as a pleasant surprise since it essentially means that we one day could spread this trait in natural mosquito populations using genetic modification. Furthermore, by activating Rel 2, the genetically modified mosquitoes will attack the malaria parasite with several independent immune factors, and this will make it very difficult for Plasmodium to develop resistance,” said Dimopoulos.

Malaria kills over one million people worldwide each year.

“Caspar controls resistance to Plasmodium falciparum in diverse Anopheline species” was written by Lindsey S. Garver, Yuemei Dong and George Dimopoulos. Funding was provided by National Institutes of Health, the National Science Foundation and the Johns Hopkins Malaria Research Institute.

Media contact for Johns Hopkins Bloomberg School of Public Health: Tim Parsons at 410-955-7619 or tmparson@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

nachricht German scientists question study about plastic-eating caterpillars
15.09.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>