Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria Immunity Trigger Found for Multiple Mosquito Species

16.03.2009
Researchers at the Johns Hopkins Bloomberg School of Public Health have for the first time identified a molecular pathway that triggers an immune response in multiple mosquito species capable of stopping the development of Plasmodium falciparum — the parasite that causes malaria in humans.

By silencing the gene, caspar, the researchers were able to block the development of the malaria-causing parasite in Anopheles gambiae, A. stephensi and A. albimanus mosquitoes—three mosquito species that spread malaria in Africa, Asia and the Americas. Their findings were published March 13 in PLoS Pathogens.

According to the study, the transcription factor Rel 2 is a key molecule involved in regulating several potent anti-Plasmodium defense genes that attack the parasite in the mosquito gut. Rel 2 is activated by the immune deficiency pathway (Imd) which, in turn, is negatively regulated by the caspar gene; when caspar is silenced the Rel 2 is activated. The researchers found that silencing of the caspar gene through the manipulation of gene expression resulted in mosquitoes that successfully blocked the development of Plasmodium falciparum in the gut tissue. Silencing the gene known as cactus, which is part of another pathway called Toll, was shown to have similar effect in controlling the development of Plasmodium berghei, which causes malaria in rodents.

“When a mosquito is feeding on malaria-infected blood, the parasite will be recognized by the mosquito’s immune system through receptors that then start the immune response. In the wild, this response is believed to occur too late to mount an efficient immune defense that would kill all parasites. At least a few Plasmodia will successfully develop inside the mosquito and enable transmission of malaria,” explained George Dimopoulos, PhD, senior author of the study and associate professor at the Johns Hopkins Malaria Research Institute. “In the lab we activated this immune response in advance of infection, giving the mosquito a head start in defeating the invading parasite.”

Dimopoulos and his colleagues Lindsey Graver and Yuemei Dong also found that Rel 2 activation did not affect the survival and egg laying fitness of the modified mosquitoes.

“This came as a pleasant surprise since it essentially means that we one day could spread this trait in natural mosquito populations using genetic modification. Furthermore, by activating Rel 2, the genetically modified mosquitoes will attack the malaria parasite with several independent immune factors, and this will make it very difficult for Plasmodium to develop resistance,” said Dimopoulos.

Malaria kills over one million people worldwide each year.

“Caspar controls resistance to Plasmodium falciparum in diverse Anopheline species” was written by Lindsey S. Garver, Yuemei Dong and George Dimopoulos. Funding was provided by National Institutes of Health, the National Science Foundation and the Johns Hopkins Malaria Research Institute.

Media contact for Johns Hopkins Bloomberg School of Public Health: Tim Parsons at 410-955-7619 or tmparson@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>