Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria: Hot News on the Parasite

05.06.2009
A sticky layer of proteins covers the malaria parasite during a certain phase of its life-cycle, as was recently shown by scientists from the Research Center for Infectious Diseases of the University of Würzburg. This discovery might be an important step towards the development of vaccines.

The malaria pathogen Plasmodium falciparum is a parasite consisting of a single cell. It is transmitted to humans by the bite of an Anopheles mosquito. In the human body the pathogen invades the red blood cells, digests them - and thus causes a life-threatening disease.

The parasite's sexual reproduction takes place in the gut of the mosquito: When mosquitoes bite an infected person, they not only take up the blood, but also the parasite. In the gut, the plasmodia transform into generative cells of different sizes, which can, in principle, be compared to human egg and sperm cells. They fuse, leave the midgut and migrate into the mosquito's salivary glands. During the next blood meal, the mosquito infects another human, and thus completes the parasite?s life cycle.

A protein layer covers the generative cells of the malaria parasite

A Würzburg research team around Gabriele Pradel and Nina Simon made an astonishing discovery: During maturation of of its generative cells, the pathogen expresses six special proteins, which assemble to form larger complexes. These protein complexes can later be found on the surface of the "egg" and form a sticky cover. These findings have now been published in the Journal of Biological Chemistry.

Why is this such hot news? "The sticky cover might function to capture the 'sperm' cells. But it is also possible that the egg protects itself against the aggressive environment of the mosquito midgut", Gabriele Pradel speculates.

A protective mechanism would in fact be plausible. In the mosquito gut the malaria parasites initially live protected inside the human red blood cells. However, these rupture as soon as the generative cells are mature - from this moment on a new protective shield would be useful for the survival of the pathogen.

A new target for a vaccine?

This sticky shield might be a weak point of the malaria parasite. If essential for malaria reproduction, the proteins would be an attractive target for so-called transmission blocking vaccines. But first of all, Gabriele Pradel and her team have to identify the real purpose of the layer. And this can take several years.

New measures against malaria are needed urgently: All around the world, an estimated one to three million people die of this infection every year. The pathogens are getting more and more resistant against existing drugs; a possible vaccine is being clinically tested. Other prospective vaccines have all proved to be without effect.

Break through by breeding mosquitoes

The Würzburg research group studies the development of the malaria parasites in the Anopheles mosquito in a high security lab. Here, they rear the mosquitoes, from the eggs, to the larvae and the pupae, and finally to the adult insects. For their experiments, the scientists take the freshly hatched mosquitoes and have them suck human blood to which they added plasmodia.

The breeding of Anopheles mosquitoes in the so-called insectory is Gabriele Pradel's pride and joy: "Within Germany, similar research opportunities only exist in Hamburg and Heidelberg." Even globally, they are rare: Only a total of about ten laboratories have one.

About Gabriele Pradel

The microbiologist Gabriele Pradel is heading a young investigator group at the Würzburg Research Center for Infectious Diseases since 2005. The German Research Foundation (DFG) sponsors her work in the framework of the Emmy Noether Program.

"Sexual Stage Adhesion Proteins Form Multi-protein Complexes in the Malaria Parasite Plasmodium falciparum", Nina Simon, Sabrina M. Scholz, Cristina K. Moreira, Thomas J. Templeton, Andrea Kuehn, Marie-Adrienne Dude, and Gabriele Pradel. The Journal of Biological Chemistry, Vol. 284, Issue 21, 14537-14546, MAY 22, 2009. DOI 10.1074/jbc.M808472200

Contact: PD Dr. Gabriele Pradel; phone ++ 49 (931) 31-2174, gabriele.pradel@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>