Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria: Hot News on the Parasite

05.06.2009
A sticky layer of proteins covers the malaria parasite during a certain phase of its life-cycle, as was recently shown by scientists from the Research Center for Infectious Diseases of the University of Würzburg. This discovery might be an important step towards the development of vaccines.

The malaria pathogen Plasmodium falciparum is a parasite consisting of a single cell. It is transmitted to humans by the bite of an Anopheles mosquito. In the human body the pathogen invades the red blood cells, digests them - and thus causes a life-threatening disease.

The parasite's sexual reproduction takes place in the gut of the mosquito: When mosquitoes bite an infected person, they not only take up the blood, but also the parasite. In the gut, the plasmodia transform into generative cells of different sizes, which can, in principle, be compared to human egg and sperm cells. They fuse, leave the midgut and migrate into the mosquito's salivary glands. During the next blood meal, the mosquito infects another human, and thus completes the parasite?s life cycle.

A protein layer covers the generative cells of the malaria parasite

A Würzburg research team around Gabriele Pradel and Nina Simon made an astonishing discovery: During maturation of of its generative cells, the pathogen expresses six special proteins, which assemble to form larger complexes. These protein complexes can later be found on the surface of the "egg" and form a sticky cover. These findings have now been published in the Journal of Biological Chemistry.

Why is this such hot news? "The sticky cover might function to capture the 'sperm' cells. But it is also possible that the egg protects itself against the aggressive environment of the mosquito midgut", Gabriele Pradel speculates.

A protective mechanism would in fact be plausible. In the mosquito gut the malaria parasites initially live protected inside the human red blood cells. However, these rupture as soon as the generative cells are mature - from this moment on a new protective shield would be useful for the survival of the pathogen.

A new target for a vaccine?

This sticky shield might be a weak point of the malaria parasite. If essential for malaria reproduction, the proteins would be an attractive target for so-called transmission blocking vaccines. But first of all, Gabriele Pradel and her team have to identify the real purpose of the layer. And this can take several years.

New measures against malaria are needed urgently: All around the world, an estimated one to three million people die of this infection every year. The pathogens are getting more and more resistant against existing drugs; a possible vaccine is being clinically tested. Other prospective vaccines have all proved to be without effect.

Break through by breeding mosquitoes

The Würzburg research group studies the development of the malaria parasites in the Anopheles mosquito in a high security lab. Here, they rear the mosquitoes, from the eggs, to the larvae and the pupae, and finally to the adult insects. For their experiments, the scientists take the freshly hatched mosquitoes and have them suck human blood to which they added plasmodia.

The breeding of Anopheles mosquitoes in the so-called insectory is Gabriele Pradel's pride and joy: "Within Germany, similar research opportunities only exist in Hamburg and Heidelberg." Even globally, they are rare: Only a total of about ten laboratories have one.

About Gabriele Pradel

The microbiologist Gabriele Pradel is heading a young investigator group at the Würzburg Research Center for Infectious Diseases since 2005. The German Research Foundation (DFG) sponsors her work in the framework of the Emmy Noether Program.

"Sexual Stage Adhesion Proteins Form Multi-protein Complexes in the Malaria Parasite Plasmodium falciparum", Nina Simon, Sabrina M. Scholz, Cristina K. Moreira, Thomas J. Templeton, Andrea Kuehn, Marie-Adrienne Dude, and Gabriele Pradel. The Journal of Biological Chemistry, Vol. 284, Issue 21, 14537-14546, MAY 22, 2009. DOI 10.1074/jbc.M808472200

Contact: PD Dr. Gabriele Pradel; phone ++ 49 (931) 31-2174, gabriele.pradel@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>