Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making waves in the brain

28.04.2009
Researchers use lasers to induce gamma brain waves in mice

Scientists have studied high-frequency brain waves, known as gamma oscillations, for more than 50 years, believing them crucial to consciousness, attention, learning and memory. Now, for the first time, MIT researchers and colleagues have found a way to induce these waves by shining laser light directly onto the brains of mice.

The work takes advantage of a newly developed technology known as optogenetics, which combines genetic engineering with light to manipulate the activity of individual nerve cells. The research helps explain how the brain produces gamma waves and provides new evidence of the role they play in regulating brain functions — insights that could someday lead to new treatments for a range of brain-related disorders.

"Gamma waves are known to be [disrupted] in people with schizophrenia and other psychiatric and neurological diseases," says Li-Huei Tsai, Picower Professor of Neuroscience and a Howard Hughes Medical Institute investigator. "This new tool will give us a great chance to probe the function of these circuits."

Tsai co-authored a paper about the work that appears in the April 26 online issue of Nature.

Gamma oscillations reflect the synchronous activity of large interconnected networks of neurons, firing together at frequencies ranging from 20 to 80 cycles per second. "These oscillations are thought to be controlled by a specific class of inhibitory cells known as fast-spiking interneurons," says Jessica Cardin, co-lead author on the study and a postdoctoral fellow at MIT's McGovern Institute for Brain Research. "But until now, a direct test of this idea was not possible."

To determine which neurons are responsible for driving the oscillations, the researchers used a protein called channelrhodopsin-2 (ChR2), which can sensitize neurons to light. "By combining several genetic tricks, we were able to express ChR2 in different classes of neurons, allowing us to manipulate their activity with precise timing via a laser and an optical fiber over the brain," explains co-lead author Marie Carlén, a postdoctoral fellow at the Picower Institute.

The trick for inducing gamma waves was the selective activation of the "fast-spiking" interneurons, named for their characteristic pattern of electrical activity. When these cells were driven with high frequency laser pulses, the illuminated region of cortex started to produce gamma oscillations. "We've shown for the first time that it is possible to induce a specific brain state by activating a specific cell type" says co-author Christopher Moore, associate professor of neuroscience and an investigator in the McGovern Institute. In contrast, no gamma oscillations were induced when the fast-spiking interneurons were activated at low frequencies, or when a different class of neurons was activated.

The authors further showed that these brain rhythms regulate the processing of sensory signals. They found that the brain's response to a tactile stimulus was greater or smaller depending on exactly where the stimulus occurred within the oscillation cycle. "It supports the idea that these synchronous oscillations are important for controlling how we perceive stimuli," says Moore. "Gamma rhythms might serve to make a sound louder, or a visual input brighter, all based on how these patterns regulate brain circuits."

Because this new approach required a merger of expertise from neuroscience and molecular genetics, three different laboratories contributed to its completion. In addition to Tsai, Moore and Carlén of MIT, co-authors include Jessica Cardin, research affiliate at the McGovern Institute and the University of Pennsylvania, and Karl Deisseroth and Feng Zhang at Stanford University. Other co-authors were Konstantinos Meletis, a postdoctoral fellow at the Picower Institute, and Ulf Knoblich, a graduate student in MIT's Department of Brain and Cognitive Sciences.

This work was supported by NARSAD, the National Institutes of Health, the National Science Foundation, the Thomas F. Peterson fund, the Simons Foundation Autism Research Initiative and the Knut and Alice Wallenberg Foundation.

Written by Deborah Halber, Picower Institute

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>