Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making waves in the brain

28.04.2009
Researchers use lasers to induce gamma brain waves in mice

Scientists have studied high-frequency brain waves, known as gamma oscillations, for more than 50 years, believing them crucial to consciousness, attention, learning and memory. Now, for the first time, MIT researchers and colleagues have found a way to induce these waves by shining laser light directly onto the brains of mice.

The work takes advantage of a newly developed technology known as optogenetics, which combines genetic engineering with light to manipulate the activity of individual nerve cells. The research helps explain how the brain produces gamma waves and provides new evidence of the role they play in regulating brain functions — insights that could someday lead to new treatments for a range of brain-related disorders.

"Gamma waves are known to be [disrupted] in people with schizophrenia and other psychiatric and neurological diseases," says Li-Huei Tsai, Picower Professor of Neuroscience and a Howard Hughes Medical Institute investigator. "This new tool will give us a great chance to probe the function of these circuits."

Tsai co-authored a paper about the work that appears in the April 26 online issue of Nature.

Gamma oscillations reflect the synchronous activity of large interconnected networks of neurons, firing together at frequencies ranging from 20 to 80 cycles per second. "These oscillations are thought to be controlled by a specific class of inhibitory cells known as fast-spiking interneurons," says Jessica Cardin, co-lead author on the study and a postdoctoral fellow at MIT's McGovern Institute for Brain Research. "But until now, a direct test of this idea was not possible."

To determine which neurons are responsible for driving the oscillations, the researchers used a protein called channelrhodopsin-2 (ChR2), which can sensitize neurons to light. "By combining several genetic tricks, we were able to express ChR2 in different classes of neurons, allowing us to manipulate their activity with precise timing via a laser and an optical fiber over the brain," explains co-lead author Marie Carlén, a postdoctoral fellow at the Picower Institute.

The trick for inducing gamma waves was the selective activation of the "fast-spiking" interneurons, named for their characteristic pattern of electrical activity. When these cells were driven with high frequency laser pulses, the illuminated region of cortex started to produce gamma oscillations. "We've shown for the first time that it is possible to induce a specific brain state by activating a specific cell type" says co-author Christopher Moore, associate professor of neuroscience and an investigator in the McGovern Institute. In contrast, no gamma oscillations were induced when the fast-spiking interneurons were activated at low frequencies, or when a different class of neurons was activated.

The authors further showed that these brain rhythms regulate the processing of sensory signals. They found that the brain's response to a tactile stimulus was greater or smaller depending on exactly where the stimulus occurred within the oscillation cycle. "It supports the idea that these synchronous oscillations are important for controlling how we perceive stimuli," says Moore. "Gamma rhythms might serve to make a sound louder, or a visual input brighter, all based on how these patterns regulate brain circuits."

Because this new approach required a merger of expertise from neuroscience and molecular genetics, three different laboratories contributed to its completion. In addition to Tsai, Moore and Carlén of MIT, co-authors include Jessica Cardin, research affiliate at the McGovern Institute and the University of Pennsylvania, and Karl Deisseroth and Feng Zhang at Stanford University. Other co-authors were Konstantinos Meletis, a postdoctoral fellow at the Picower Institute, and Ulf Knoblich, a graduate student in MIT's Department of Brain and Cognitive Sciences.

This work was supported by NARSAD, the National Institutes of Health, the National Science Foundation, the Thomas F. Peterson fund, the Simons Foundation Autism Research Initiative and the Knut and Alice Wallenberg Foundation.

Written by Deborah Halber, Picower Institute

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>