Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making waves in the brain

28.04.2009
Researchers use lasers to induce gamma brain waves in mice

Scientists have studied high-frequency brain waves, known as gamma oscillations, for more than 50 years, believing them crucial to consciousness, attention, learning and memory. Now, for the first time, MIT researchers and colleagues have found a way to induce these waves by shining laser light directly onto the brains of mice.

The work takes advantage of a newly developed technology known as optogenetics, which combines genetic engineering with light to manipulate the activity of individual nerve cells. The research helps explain how the brain produces gamma waves and provides new evidence of the role they play in regulating brain functions — insights that could someday lead to new treatments for a range of brain-related disorders.

"Gamma waves are known to be [disrupted] in people with schizophrenia and other psychiatric and neurological diseases," says Li-Huei Tsai, Picower Professor of Neuroscience and a Howard Hughes Medical Institute investigator. "This new tool will give us a great chance to probe the function of these circuits."

Tsai co-authored a paper about the work that appears in the April 26 online issue of Nature.

Gamma oscillations reflect the synchronous activity of large interconnected networks of neurons, firing together at frequencies ranging from 20 to 80 cycles per second. "These oscillations are thought to be controlled by a specific class of inhibitory cells known as fast-spiking interneurons," says Jessica Cardin, co-lead author on the study and a postdoctoral fellow at MIT's McGovern Institute for Brain Research. "But until now, a direct test of this idea was not possible."

To determine which neurons are responsible for driving the oscillations, the researchers used a protein called channelrhodopsin-2 (ChR2), which can sensitize neurons to light. "By combining several genetic tricks, we were able to express ChR2 in different classes of neurons, allowing us to manipulate their activity with precise timing via a laser and an optical fiber over the brain," explains co-lead author Marie Carlén, a postdoctoral fellow at the Picower Institute.

The trick for inducing gamma waves was the selective activation of the "fast-spiking" interneurons, named for their characteristic pattern of electrical activity. When these cells were driven with high frequency laser pulses, the illuminated region of cortex started to produce gamma oscillations. "We've shown for the first time that it is possible to induce a specific brain state by activating a specific cell type" says co-author Christopher Moore, associate professor of neuroscience and an investigator in the McGovern Institute. In contrast, no gamma oscillations were induced when the fast-spiking interneurons were activated at low frequencies, or when a different class of neurons was activated.

The authors further showed that these brain rhythms regulate the processing of sensory signals. They found that the brain's response to a tactile stimulus was greater or smaller depending on exactly where the stimulus occurred within the oscillation cycle. "It supports the idea that these synchronous oscillations are important for controlling how we perceive stimuli," says Moore. "Gamma rhythms might serve to make a sound louder, or a visual input brighter, all based on how these patterns regulate brain circuits."

Because this new approach required a merger of expertise from neuroscience and molecular genetics, three different laboratories contributed to its completion. In addition to Tsai, Moore and Carlén of MIT, co-authors include Jessica Cardin, research affiliate at the McGovern Institute and the University of Pennsylvania, and Karl Deisseroth and Feng Zhang at Stanford University. Other co-authors were Konstantinos Meletis, a postdoctoral fellow at the Picower Institute, and Ulf Knoblich, a graduate student in MIT's Department of Brain and Cognitive Sciences.

This work was supported by NARSAD, the National Institutes of Health, the National Science Foundation, the Thomas F. Peterson fund, the Simons Foundation Autism Research Initiative and the Knut and Alice Wallenberg Foundation.

Written by Deborah Halber, Picower Institute

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>