Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making enough red blood cells

01.06.2010
EMBL scientists identify molecules that ensure red blood cell production

Red blood cells, the delivery men that take oxygen to cells all around the body, have short lives. To keep enough of them in circulation, the human body produces around 2 million of these cells every second – even more in response to challenges like severe blood loss.

In a study published today in the Journal of Experimental Medicine, scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, Italy, and EMBL’s European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have identified two small RNA molecules which ensure that enough red blood cells are produced efficiently, by fine-tuning a number of different genes involved in this process.

“A lot of the effort of blood cell formation, or haematopoiesis, goes into just keeping enough red blood cells in circulation” says Dónal O’Carroll, who led the work at EMBL Monterotondo: “We’ve identified two molecules that help to do so, and which are essential in challenging situations.”

To form red blood cells, large, round cells known as precursors have to become small and disc-shaped, like balls of plasticine squeezed between finger and thumb. In the process, they must also produce the large quantities of haemoglobin that will allow them to transport oxygen, and shrink and dispose of their nucleus. The EMBL scientists found that two microRNAs, called MiR144 and MiR451, control the final stages of this process.

O’Carroll and colleagues genetically engineered mice to have no MiR144 or MiR451. They found that such mice had defects in the final stages of red blood cell formation, but produced red blood cell precursors not only in the bone marrow, but also in large quantities in the spleen. By increasing the number of precursors, the mice compensated for the fact that a smaller percentage of those precursors matured into functional red blood cells, and thus were able to survive with only a mild anaemia.

“Under steady-state conditions, mice without MiR144 or MiR451 can just about produce enough red blood cells, but if you challenge them, by chemically inducing anaemia, most of them don’t survive, because in those conditions you just can’t live with inefficient red blood cell formation” O’Carroll explains.

O’Carroll and colleagues teamed up with Anton Enright’s group at EMBL-EBI, and used a sophisticated bioinformatics approach to understand how these microRNAs act. They found that of the two, MiR451 probably plays a key role in the process, and that it likely does so not by switching a single gene on or off, but by fine-tuning a multitude of genes involved in red blood cell formation.

These microRNA molecules have been conserved throughout vertebrate evolution. They are known to also be important for red blood cell formation in fish, and are likely to play a similar role in humans too. Thus, investigating their function further could help to understand how our own red blood cells are formed, and how defects in that process may lead to conditions such as anaemia.

Sonia Furtado
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado | EMBL
Further information:
http://www.embl.org
http://www.embl.de/aboutus/communication_outreach/media_relations/2010/100531_Monterotondo/index.html

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>