Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making nanowires from protein and DNA

04.09.2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago.

For example, synthetic structures made of DNA could one day be used to deliver cancer drugs directly to tumor cells, and customized proteins could be designed to specifically attack a certain kind of virus.


Design strategy of protein-DNA nanowires. The protein-DNA nanowire is self-assembled with a computationally designed protein homodimer and a double-stranded DNA with the protein binding sites properly arranged.

Credit: Yun (Kurt) Mou, Jiun-Yann Yu, Timothy M. Wannier, Chin-Lin Guo and Stephen L. Mayo/Caltech

Although researchers have already made such structures out of DNA or protein alone, a Caltech team recently created--for the first time--a synthetic structure made of both protein and DNA. Combining the two molecule types into one biomaterial opens the door to numerous applications.

A paper describing the so-called hybridized, or multiple component, materials appears in the September 2 issue of the journal Nature.

There are many advantages to multiple component materials, says Yun (Kurt) Mou (PhD '15), first author of the Nature study. "If your material is made up of several different kinds of components, it can have more functionality. For example, protein is very versatile; it can be used for many things, such as protein-protein interactions or as an enzyme to speed up a reaction. And DNA is easily programmed into nanostructures of a variety of sizes and shapes."

But how do you begin to create something like a protein-DNA nanowire--a material that no one has seen before?

Mou and his colleagues in the laboratory of Stephen Mayo, Bren Professor of Biology and Chemistry and the William K. Bowes Jr. Leadership Chair of Caltech's Division of Biology and Biological Engineering, began with a computer program to design the type of protein and DNA that would work best as part of their hybrid material.

"Materials can be formed using just a trial-and-error method of combining things to see what results, but it's better and more efficient if you can first predict what the structure is like and then design a protein to form that kind of material," he says.

The researchers entered the properties of the protein-DNA nanowire they wanted into a computer program developed in the lab; the program then generated a sequence of amino acids (protein building blocks) and nitrogenous bases (DNA building blocks) that would produce the desired material.

However, successfully making a hybrid material is not as simple as just plugging some properties into a computer program, Mou says. Although the computer model provides a sequence, the researcher must thoroughly check the model to be sure that the sequence produced makes sense; if not, the researcher must provide the computer with information that can be used to correct the model. "So in the end, you choose the sequence that you and the computer both agree on. Then, you can physically mix the prescribed amino acids and DNA bases to form the nanowire."

The resulting sequence was an artificial version of a protein-DNA coupling that occurs in nature. In the initial stage of gene expression, called transcription, a sequence of DNA is first converted into RNA. To pull in the enzyme that actually transcribes the DNA into RNA, proteins called transcription factors must first bind certain regions of the DNA sequence called protein-binding domains.

Using the computer program, the researchers engineered a sequence of DNA that contained many of these protein-binding domains at regular intervals. They then selected the transcription factor that naturally binds to this particular protein-binding site--the transcription factor called Engrailed from the fruit fly Drosophila. However, in nature, Engrailed only attaches itself to the protein-binding site on the DNA. To create a long nanowire made of a continuous strand of protein attached to a continuous strand of DNA, the researchers had to modify the transcription factor to include a site that would allow Engrailed also to bind to the next protein in line.

"Essentially, it's like giving this protein two hands instead of just one," Mou explains. "The hand that holds the DNA is easy because it is provided by nature, but the other hand needs to be added there to hold onto another protein."

Another unique attribute of this new protein-DNA nanowire is that it employs coassembly--meaning that the material will not form until both the protein components and the DNA components have been added to the solution. Although materials previously could be made out of DNA with protein added later, the use of coassembly to make the hybrid material was a first. This attribute is important for the material's future use in medicine or industry, Mou says, as the two sets of components can be provided separately and then combined to make the nanowire whenever and wherever it is needed.

This finding builds on earlier work in the Mayo lab, which, in 1997, created one of the first artificial proteins, thus launching the field of computational protein design. The ability to create synthetic proteins allows researchers to develop proteins with new capabilities and functions, such as therapeutic proteins that target cancer. The creation of a coassembled protein-DNA nanowire is another milestone in this field.

"Our earlier work focused primarily on designing soluble, protein-only systems. The work reported here represents a significant expansion of our activities into the realm of nanoscale mixed biomaterials," Mayo says.

Although the development of this new biomaterial is in the very early stages, the method, Mou says, has many promising applications that could change research and clinical practices in the future.

"Our next step will be to explore the many potential applications of our new biomaterial," Mou says. "It could be incorporated into methods to deliver drugs into cells--to create targeted therapies that only bind to a certain biomarker on a certain cell type, such as cancer cells. We could also expand the idea of protein-DNA nanowires to protein-RNA nanowires that could be used for gene therapy applications. And because this material is brand-new, there are probably many more applications that we haven't even considered yet."

###

The work was published in a paper titled, "Computational design of co-assembling protein-DNA nanowires." In addition to Mou and Mayo, other Caltech coauthors include former graduate students Jiun-Yann Yu (PhD '14) and Timothy M. Wannier (PhD '15), as well as Chin-Lin Guo from Academia Sinica in Taiwan. The work was funded by the Defense Advanced Research Projects Agency Protein Design Processes Program, a National Security Science and Engineering Faculty Fellowship, and the Caltech Programmable Molecular Technology Initiative funded by the Gordon and Betty Moore Foundation.

Media Contact

Deborah Williams-Hedges
debwms@caltech.edu
626-395-3227

 @caltech

http://www.caltech.edu 

Deborah Williams-Hedges | EurekAlert!

Further reports about: DNA materials nanowire nanowires proteins sequence synthetic transcription factor

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>