Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Hydrogenation Greener

01.07.2013
Researchers discover way to use iron as catalyst for widely used chemical process, replacing heavy metals

Researchers from McGill University, RIKEN (The Institute of Physical and Chemical Research, Wako, Japan) and the Institute for Molecular Science (Okazaki, Japan) have discovered a way to make the widely used chemical process of hydrogenation more environmentally friendly – and less expensive.

Hydrogenation is a chemical process used in a wide range of industrial applications, from food products, such as margarine, to petrochemicals and pharmaceuticals. The process typically involves the use of heavy metals, such as palladium or platinum, to catalyze the chemical reaction. While these metals are very efficient catalysts, they are also non-renewable, costly, and subject to sharp price fluctuations on international markets.

Because these metals are also toxic, even in small quantities, they also raise environmental and safety concerns. Pharmaceutical companies, for example, must use expensive purification methods to limit residual levels of these elements in pharmaceutical products. Iron, by contrast, is both naturally abundant and far less toxic than heavy metals.

Previous work by other researchers has shown that iron nanoparticles -- tiny pieces of metallic iron -- can be used to activate the hydrogenation reaction. Iron, however, has a well-known drawback: it rusts in the presence of oxygen or water. When rusted, iron nanoparticles stop acting as hydrogenation catalysts. This problem, which occurs with so much as trace quantities of water, has prevented iron nanoparticles from being used in industry.

In research published today in the journal Green Chemistry, scientists from McGill, RIKEN, and the Institute for Molecular Science report that they have found a way to overcome this limitation, making iron an active catalyst in water-ethanol mixtures containing up to 90% water.

The key to this new method is to produce the particles directly inside a polymer matrix, composed of amphiphilic polymers based on polystyrene and polyethylene glycol. The polymer acts as a wrapping film that protects the iron surface from rusting in the presence of water, while allowing the reactants to reach the water and react.

This innovation enabled the researchers to use iron nanoparticles as catalyst in a flow system, raising the possibility that iron could be used to replace platinum-series metals for hydrogenation under industrial conditions.

“Our research is now focused on achieving a better understanding of how the polymers are protecting the surface of the iron from water, while at the same time allowing the iron to interact with the substrate,” says Audrey Moores, an assistant professor of chemistry at McGill and co-corresponding author of the paper.

The results stem from an ongoing collaboration between McGill and RIKEN, one of Japan’s largest scientific research organizations, in the fields of nanotechnology and green chemistry. Lead author Reuben Hudson, a doctoral student at McGill, worked on the project at the RIKEN Center for Sustainable Resource Science and at the Institute for Molecular Science in Japan. Co-authors of the paper are Prof. Chao-Jun Li of McGill, Dr. Go Hamasaka and Dr. Takao Osako of the Institute for Molecular Science, Dr. Yoichi M.A. Yamada of Riken and Prof. Yasuhiro Uozumi of Riken and the Institute for Molecular Science.

“The approach we have developed through this collaboration could lead to more sustainable industrial processes,” says Prof. Uozumi. “This technique provides a system in which the reaction can happen over and over with the same small amount of a catalytic material, and it enables it to take place in almost pure water -- the green solvent par excellence.”

Funding for the research was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), the Canada Research Chairs, the Fonds de recherche du Québec – Nature et technologies, the Riken-McGill Fund, the Japan Society for the Promotion of Science (JSPS), and the Japan Science and Technology Agency (JST).

Link to the article: http://xlink.rsc.org/?doi=10.1039/C3GC40789F

Chris Chipello
Media Relations
McGill University
514-398-4201
christopher.chipello@mcgill.ca
Prof. Audrey Moores
Department of Chemistry
McGill University
audrey.moores@mcgill.ca

Chris Chipello | Newswise
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>