Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making one into two – first German genome comprehensively resolved at its molecular level

13.09.2011
Max Planck researchers analyse the two chromosome sets in the human genome separately for the first time

Errors in the copying and reading of genes can have very serious consequences. Fortunately human genetic material is available in duplicate as everyone inherits a complete genome from both their mother and father.

However, the two genomes are different: researchers refer to the different variants of the gene sequence on the individual chromosomes as “haplotypes” and the complete analysis of the genome requires detailed knowledge of both haplotypes. Scientists at the Max Planck Institute for Molecular Genetics in Berlin have now comprehensively decoded both sets of chromosomes from a human genome separately for the first time.

This step is essential for gaining a deeper understanding of human biology, the analysis of disease risks and, accordingly, the development of new and more individualised strategies for the prevention and treatment of diseases. The genome fully decoded by Margret Hoehe’s team is also the first completely sequenced genome of a German individual.

Everyone inherits a genome from their mother and father, meaning that each of their 22 chromosomes (autosomes), including the genes they contain, exist in duplicate. The only exceptions to this rule are the two sex chromosomes (23rd chromosome pair). The two chromosome sets differ from each other, and these different versions at equivalent genomic regions are called haplotypes.

Scientists from the Max Planck Institute for Molecular Genetics in Berlin have now resolved a human genome almost completely into its molecular haplotypes, thus decoding the two individual genomes. In the current edition of the journal Genome Research, Margret Hoehe and her colleagues describe how they assigned over 99 percent of all base differences (SNPs), a total of over three million SNPs, to one of the two versions of each chromosome. This is the first German genome to have been completely decoded and the first to be analysed at this previously unattained level of detail.

Current sequencing technologies do not deliver both sets of chromosomes separately but instead provide a composite of both versions. Therefore, the scientists had to develop a new method to be able to identify the different sequences of genetic letters for both versions of the chromosomes separately. “In essence, we each have two genomes, inherited from each of our parents, and we need to look at these separately and at their interactions to fully understand the biology of genomes,” says Margret Hoehe, leader of the research group. “We constantly refer to ‘the’ genome. However, it is essential for the development of personalised medicine that an individual’s two sets of chromosomes are considered separately as they can differ regarding their genetic codes and, consequently also, their encoded functions.”

This comprehensive systematic analysis of the haplotypes of a human genome, carried out in Berlin, represents an important scientific advancement. In their study, which was funded by the German National Genome Research Network, Hoehe and her team succeeded in separately decoding for both chromosome sets the sequence of almost all of the genes in the genome of a 51-year-old German male. Importantly, 90 percent of the genes exist in two different molecular forms. “The two chromosome sets in our personal genome differ at a total of about two million positions. Consequently, in order to portray our natural biological blueprint in its entirety, instead of reading the genome as a mixed product, as was previously the case, in future, each of the two haplotypes must be determined separately,” says Hoehe.

The scientists also succeeded for the first time in recording a genome in its molecular individuality. Between 60 and 70 percent, i.e. the majority of the genes, only arise in their characteristic molecular forms in the individual whose genome has just been analysed. “Our findings show very clearly that the biology of genes and genomes has a strong individual component,” explains Hoehe. This insight is particularly important for the development of personalised treatments for individual patients as “for truly effective personalised medicine we must know both of a person’s haplotypes because both influence his or her state of health or disease,” says Hoehe. A good example of this is the BRCA1 gene, which causes a predisposition for breast cancer in its mutated form. The genome of the 51-year-old subject examined in this study carries two mutations in this breast cancer gene – fortunately in the same gene copy. The copy on the other chromosome is unaltered. As a consequence, despite these two mutations, the genome has a healthy version of the gene. “The knowledge whether mutations affect both haplotypes is essential to be able to assess a patient’s future risk of developing a disease,” says Hoehe. Overall, the scientists identified 159 mutated genes in their test subject with a disease-predisposing potential, which can impair the function of proteins. In 86 of these genes, the mutations were found in the same copy of the gene.

The findings of the Max Planck scientists raise new and fundamental questions for future consideration: How do the two different molecular forms of a gene behave towards each other? Do they work together or against each other? Which of the two gene forms is dominant and why? A gene can only make a person sick if one form of it overrides the other or if both copies are affected. “Therefore, the distinction of haplotypes is essential to enable us to understand in future how diseases arise and how they can be treated,” says Hoehe.

Dr. Margret Hoehe | EurekAlert!
Further information:
http://www.mpg.de/4418820/genome_decoded

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>