Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the right contacts to get ahead

07.06.2010
A set of mutant yeast strains allows researchers to identify structural elements that help motor proteins to get moving

Cells are crisscrossed by microtubules, protein cables that provide essential infrastructure and serve as ‘highways’ for moving molecular cargoes. Motor proteins, such as kinesin that travels along microtubules via a multi-step ‘walking’ mechanism, effectively drive this transport.

The broad strokes of this process are well understood generally, but new work from Etsuko Muto and Seiichi Uchimura of the RIKEN Brain Science Institute in Wako in collaboration with physicists at Waseda University, Tokyo, has revealed valuable new details about how microtubule interactions facilitate kinesin movement1.

Kinesin is associated with the nucleotide molecule adenosine diphosphate (ADP) when it first binds microtubules, after which it undergoes a structural change that triggers release of ADP and enables interaction with adenosine triphosphate (ATP). Subsequent enzymatic processing of ATP into ADP triggers additional structural changes, causing kinesin to move forward along the microtubule while also returning the protein to its initial ADP-bound state.

Microtubules are composed of dimers of the protein á- and â-tubulin, but eukaryotic cells can have numerous different tubulin subtypes, making it challenging to investigate molecular-level details of kinesin–tubulin interaction. To overcome this problem, Muto and Uchimura developed yeast strains that express only a single subtype each of á- and â-tubulin, thus enabling simple screening of the effects of individual tubulin mutations. In their most recent work, they have used this approach to extensively characterize points of interaction between kinesin and microtubules by generating 36 yeast strains with individual mutations in either tubulin subunit.

Their data suggest that á-tubulin is primarily responsible in the initial association with kinesin-ADP, with â-tubulin providing important stabilizing interactions following the release of ADP. The researchers were particularly surprised to note that mutations targeting one highly conserved glutamate (E415) in á-tubulin caused a five-fold reduction in kinesin enzymatic activity, apparently by impairing binding-induced release of ADP. “Our results indicate that kinesin binding to residue E415 in á-tubulin transmits a signal to the kinesin nucleotide pocket, triggering its conformational change and leading to release of ADP,” explains Muto. “I did not expect that residues in á-tubulin would play such an important role.”

In future studies, Muto and Uchimura hope to further dissect the amino acid network that communicates these structural changes across the kinesin protein. Since microtubules play a key role in diverse cellular functions beyond molecular transport, Muto believes that their mutational analysis strategy should also offer a powerful tool for studying processes ranging from the separation of chromosome pairs during cell division to cilia-mediated cell propulsion.

The corresponding author for this highlight is based at the Laboratory for Molecular Biophysics, RIKEN Brain Science Institute

Journal information

1. Uchimura, S., Oguchi, Y., Hachikubo, Y., Ishiwata, S. & Muto, E. Key residues on microtubule responsible for activation of kinesin ATPase. The EMBO Journal 29, 1167–1175 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6281
http://www.researchsea.com

Further reports about: ADP ATP RIKEN Science TV Uchimura cellular function structural changes

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>