Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the right contacts to get ahead

07.06.2010
A set of mutant yeast strains allows researchers to identify structural elements that help motor proteins to get moving

Cells are crisscrossed by microtubules, protein cables that provide essential infrastructure and serve as ‘highways’ for moving molecular cargoes. Motor proteins, such as kinesin that travels along microtubules via a multi-step ‘walking’ mechanism, effectively drive this transport.

The broad strokes of this process are well understood generally, but new work from Etsuko Muto and Seiichi Uchimura of the RIKEN Brain Science Institute in Wako in collaboration with physicists at Waseda University, Tokyo, has revealed valuable new details about how microtubule interactions facilitate kinesin movement1.

Kinesin is associated with the nucleotide molecule adenosine diphosphate (ADP) when it first binds microtubules, after which it undergoes a structural change that triggers release of ADP and enables interaction with adenosine triphosphate (ATP). Subsequent enzymatic processing of ATP into ADP triggers additional structural changes, causing kinesin to move forward along the microtubule while also returning the protein to its initial ADP-bound state.

Microtubules are composed of dimers of the protein á- and â-tubulin, but eukaryotic cells can have numerous different tubulin subtypes, making it challenging to investigate molecular-level details of kinesin–tubulin interaction. To overcome this problem, Muto and Uchimura developed yeast strains that express only a single subtype each of á- and â-tubulin, thus enabling simple screening of the effects of individual tubulin mutations. In their most recent work, they have used this approach to extensively characterize points of interaction between kinesin and microtubules by generating 36 yeast strains with individual mutations in either tubulin subunit.

Their data suggest that á-tubulin is primarily responsible in the initial association with kinesin-ADP, with â-tubulin providing important stabilizing interactions following the release of ADP. The researchers were particularly surprised to note that mutations targeting one highly conserved glutamate (E415) in á-tubulin caused a five-fold reduction in kinesin enzymatic activity, apparently by impairing binding-induced release of ADP. “Our results indicate that kinesin binding to residue E415 in á-tubulin transmits a signal to the kinesin nucleotide pocket, triggering its conformational change and leading to release of ADP,” explains Muto. “I did not expect that residues in á-tubulin would play such an important role.”

In future studies, Muto and Uchimura hope to further dissect the amino acid network that communicates these structural changes across the kinesin protein. Since microtubules play a key role in diverse cellular functions beyond molecular transport, Muto believes that their mutational analysis strategy should also offer a powerful tool for studying processes ranging from the separation of chromosome pairs during cell division to cilia-mediated cell propulsion.

The corresponding author for this highlight is based at the Laboratory for Molecular Biophysics, RIKEN Brain Science Institute

Journal information

1. Uchimura, S., Oguchi, Y., Hachikubo, Y., Ishiwata, S. & Muto, E. Key residues on microtubule responsible for activation of kinesin ATPase. The EMBO Journal 29, 1167–1175 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6281
http://www.researchsea.com

Further reports about: ADP ATP RIKEN Science TV Uchimura cellular function structural changes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>