Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the right contacts to get ahead

07.06.2010
A set of mutant yeast strains allows researchers to identify structural elements that help motor proteins to get moving

Cells are crisscrossed by microtubules, protein cables that provide essential infrastructure and serve as ‘highways’ for moving molecular cargoes. Motor proteins, such as kinesin that travels along microtubules via a multi-step ‘walking’ mechanism, effectively drive this transport.

The broad strokes of this process are well understood generally, but new work from Etsuko Muto and Seiichi Uchimura of the RIKEN Brain Science Institute in Wako in collaboration with physicists at Waseda University, Tokyo, has revealed valuable new details about how microtubule interactions facilitate kinesin movement1.

Kinesin is associated with the nucleotide molecule adenosine diphosphate (ADP) when it first binds microtubules, after which it undergoes a structural change that triggers release of ADP and enables interaction with adenosine triphosphate (ATP). Subsequent enzymatic processing of ATP into ADP triggers additional structural changes, causing kinesin to move forward along the microtubule while also returning the protein to its initial ADP-bound state.

Microtubules are composed of dimers of the protein á- and â-tubulin, but eukaryotic cells can have numerous different tubulin subtypes, making it challenging to investigate molecular-level details of kinesin–tubulin interaction. To overcome this problem, Muto and Uchimura developed yeast strains that express only a single subtype each of á- and â-tubulin, thus enabling simple screening of the effects of individual tubulin mutations. In their most recent work, they have used this approach to extensively characterize points of interaction between kinesin and microtubules by generating 36 yeast strains with individual mutations in either tubulin subunit.

Their data suggest that á-tubulin is primarily responsible in the initial association with kinesin-ADP, with â-tubulin providing important stabilizing interactions following the release of ADP. The researchers were particularly surprised to note that mutations targeting one highly conserved glutamate (E415) in á-tubulin caused a five-fold reduction in kinesin enzymatic activity, apparently by impairing binding-induced release of ADP. “Our results indicate that kinesin binding to residue E415 in á-tubulin transmits a signal to the kinesin nucleotide pocket, triggering its conformational change and leading to release of ADP,” explains Muto. “I did not expect that residues in á-tubulin would play such an important role.”

In future studies, Muto and Uchimura hope to further dissect the amino acid network that communicates these structural changes across the kinesin protein. Since microtubules play a key role in diverse cellular functions beyond molecular transport, Muto believes that their mutational analysis strategy should also offer a powerful tool for studying processes ranging from the separation of chromosome pairs during cell division to cilia-mediated cell propulsion.

The corresponding author for this highlight is based at the Laboratory for Molecular Biophysics, RIKEN Brain Science Institute

Journal information

1. Uchimura, S., Oguchi, Y., Hachikubo, Y., Ishiwata, S. & Muto, E. Key residues on microtubule responsible for activation of kinesin ATPase. The EMBO Journal 29, 1167–1175 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6281
http://www.researchsea.com

Further reports about: ADP ATP RIKEN Science TV Uchimura cellular function structural changes

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>