Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Colors from Black and White

28.05.2013
It is very annoying when colors fade over time, sometimes simply from exposure to light.

In the journal Angewandte Chemie, Japanese scientists have now introduced a new type of colorfast, environmentally friendly pigment. These consist of submicrometer-sized silicon dioxide particles and carbon black and are simply sprayed on to the desire surface. The resulting color is tough and does not fade.



Organic dyes fade when exposed to UV light. Inorganic pigments do not fade but are often based on toxic heavy metals such as chromium. In contrast, Yukikazu Takeoka, Shinya Yoshioka and their co-workers at the Universities of Nagoya and Osaka have selected silicon dioxide (SiO2), the main component of sand, as the basis for their novel pigments. Submicrometer-sized SiO2 particles look white to the human eye, so where does the color come from?

Conventional pigments absorb some portion of visible light; the reflected portions then combine to produce a certain color. A different type of color generation, known as structural color, is broadly found in nature, for example among butterflies: Arrays of very small particles can also appear colored without absorption by causing wavelength-dependent optical interference, refraction, and light scattering. The color depends of the particle size.

Structural colors are normally iridescent—their color appearance changes depending on the angles of irradiation and observation. This results from the high degree of order of the particles in their crystal lattice. To prevent this, the researchers aimed to avoid crystallization, maintaining their particles in a noncrystalline, amorphous arrangement—a very difficult challenge. The scientists solved this problem by dispersing silicon dioxide nanoparticles in methanol and spraying them onto the surface to be colored.

The methanol evaporates during the spraying process, so the SiO2 lands on the surface as a dry powder, forming a thin, even membrane of amorphous particles; it is given no chance to crystallize. Furthermore, a polyelectrolyte can be used to stabilize the structure of the colloidal amorphous array. Depending on the particle size, the researchers obtained membranes that ranged in color from whitish blue (230 nm) to whitish pink (360 nm).

These amorphous structures only produced very pale colors. However, the team found a solution to this problem: when particles of carbon black were added, the color saturation was significantly increased. The reason for this is that the carbon black particles reduce light scattering over the entire visible spectrum. This new technology thus allows for intensely colored images with many saturated colors as well as Japanese-style paintings in pale colors.

Besides for art objects, the pigments could be used for architectural paints and automotive coatings as well as in cosmetic products.

About the Author
Dr. Yukikazu Takeoka is an Associate Professor at Nagoya University. His research focus on smart materials such as structural colored materials, high mechanical strength gels, densely grafted polymer brushes, and photonic band gap materials for optical and biological applications.

Author: Yukikazu Takeoka, Nagoya University (Japan), mailto:ytakeoka@apchem.nagoya-u.ac.jp

Title: Production of Colored Pigments with Amorphous Arrays of Black and White Colloidal Particles

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301321

Yukikazu Takeoka | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>