Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making a mark on mitochondria

19.02.2015

A fluorescent probe for labeling mitochondria helps scientists study fat-burning brown adipose tissue

A new cellular labeling strategy gives researchers an efficient tool for studying the development of tissue that could help prevent the onset of obesity and cardiovascular disease [1].


The fluorescent probe AIE-MitoGreen-1 reveals changes in mitochondrial organization in brown adipose cells as they mature over the course of a week.

Reproduced, with permission, from Ref. 1 © 2014 Royal Society of Chemistry

Most people think about fat in terms of the white adipose tissue that stores the body’s excess energy, and which steadily — and visibly — accumulates as one becomes out of shape or obese. However, there is another type of fat tissue that can prevent rather than promote weight gain.

“Brown adipose tissue not only stores fats, but also has the ability to burn fats to release energy as heat,” explains Bin Liu of the A*STAR Institute of Materials Research and Engineering.

Liu sees this tissue as a promising target for anti-obesity drugs, and her group set about designing a fluorescent molecule that could help scientists visualize the development of brown adipose cells. These cells can be characterized based on the number and organization of their mitochondria, the organelles that drive cellular metabolism.

However, existing mitochondrial dyes tend to absorb each other’s fluorescence at high concentrations, resulting in a weaker overall signal as they accumulate.

In collaboration with Hong Kong University of Science and Technology researcher Ben Zhong Tang, Liu’s team devised a fluorescent dye that exhibits ‘aggregation-induced emission’. “This means that the probe does not emit fluorescence in dilute solutions,” explains Liu, “but it becomes highly fluorescent when it accumulates in mitochondria, without any self-quenching effects.”

After 20 minutes of treatment with their AIE-MitoGreen-1 probe, Liu’s group achieved bright labeling of mitochondria in brown adipose cells that lasted for more than a day. This labeling approach also left cultured cells largely unharmed, whereas only 10 per cent of cells survived prolonged treatment with a commercially available mitochondrial dye. The researchers subsequently used AIE-MitoGreen-1 to monitor the development of brown adipose tissue from precursor cells, observing changes in cell shape and mitochondrial organization over seven days (see image).

Since the basic stages of brown adipose development are well characterized, this probe could help identify treatments that stimulate or impede this process. “We hope to use our probe to monitor the activity of brown adipose cells in response to various stimuli, such as drug intervention or temperature changes,” says Liu. Her group aims to further improve their probe so that it shines longer and brighter. Ultimately, she hopes to develop variants that fluoresce at near-infrared wavelengths, which can be detected deeper within living tissue. “We would apply these probes to long-term monitoring of brown adipose cells in animal models.”

Reference

[1] Gao, M., Sim, C. K., Leung, C. W. T., Hu, Q., Feng, G. et al. A fluorescent light-up probe with AIE characteristics for specific mitochondrial imaging to identify differentiating brown adipose cells. Chemical Communications 50, 8312–8315 (2014).


Associated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>