Making a mark on mitochondria

The fluorescent probe AIE-MitoGreen-1 reveals changes in mitochondrial organization in brown adipose cells as they mature over the course of a week. Reproduced, with permission, from Ref. 1 © 2014 Royal Society of Chemistry

A new cellular labeling strategy gives researchers an efficient tool for studying the development of tissue that could help prevent the onset of obesity and cardiovascular disease [1].

Most people think about fat in terms of the white adipose tissue that stores the body’s excess energy, and which steadily — and visibly — accumulates as one becomes out of shape or obese. However, there is another type of fat tissue that can prevent rather than promote weight gain.

“Brown adipose tissue not only stores fats, but also has the ability to burn fats to release energy as heat,” explains Bin Liu of the A*STAR Institute of Materials Research and Engineering.

Liu sees this tissue as a promising target for anti-obesity drugs, and her group set about designing a fluorescent molecule that could help scientists visualize the development of brown adipose cells. These cells can be characterized based on the number and organization of their mitochondria, the organelles that drive cellular metabolism.

However, existing mitochondrial dyes tend to absorb each other’s fluorescence at high concentrations, resulting in a weaker overall signal as they accumulate.

In collaboration with Hong Kong University of Science and Technology researcher Ben Zhong Tang, Liu’s team devised a fluorescent dye that exhibits ‘aggregation-induced emission’. “This means that the probe does not emit fluorescence in dilute solutions,” explains Liu, “but it becomes highly fluorescent when it accumulates in mitochondria, without any self-quenching effects.”

After 20 minutes of treatment with their AIE-MitoGreen-1 probe, Liu’s group achieved bright labeling of mitochondria in brown adipose cells that lasted for more than a day. This labeling approach also left cultured cells largely unharmed, whereas only 10 per cent of cells survived prolonged treatment with a commercially available mitochondrial dye. The researchers subsequently used AIE-MitoGreen-1 to monitor the development of brown adipose tissue from precursor cells, observing changes in cell shape and mitochondrial organization over seven days (see image).

Since the basic stages of brown adipose development are well characterized, this probe could help identify treatments that stimulate or impede this process. “We hope to use our probe to monitor the activity of brown adipose cells in response to various stimuli, such as drug intervention or temperature changes,” says Liu. Her group aims to further improve their probe so that it shines longer and brighter. Ultimately, she hopes to develop variants that fluoresce at near-infrared wavelengths, which can be detected deeper within living tissue. “We would apply these probes to long-term monitoring of brown adipose cells in animal models.”

Reference

[1] Gao, M., Sim, C. K., Leung, C. W. T., Hu, Q., Feng, G. et al. A fluorescent light-up probe with AIE characteristics for specific mitochondrial imaging to identify differentiating brown adipose cells. Chemical Communications 50, 8312–8315 (2014).

Associated links
A*STAR article

Media Contact

A*STAR Research ResearchSEA

More Information:

http://www.researchsea.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors