Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the most of what you have

29.02.2012
Bacterium fine-tunes proteins for enhanced functionality
The bacterium Mycoplasma pneumoniae, which causes atypical pneumonia, is helping scientists uncover how cells make the most of limited resources. By measuring all the proteins this bacterium produces, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and collaborators, have found that the secret is fine-tuning.

Like a mechanic can fine-tune a car after it has left the factory, cells have ways to tweak proteins, changing their chemical properties after production – so-called post-translational modifications. Anne-Claude Gavin, Peer Bork and colleagues at EMBL measured how many of M. pneumoniae’s proteins had certain modifications.

They found that two forms of tweaking which were known to be common in our own cells are equally prevalent in this simple bacterium. Called phosphorylation and lysine acetylation, these two types of post-translational modification also talk to and interfere with each other: the scientists found that disrupting one can cause changes in the other. Since M. pneumoniae is one of the living organisms with the fewest different proteins, this interplay between phosphorylation and lysine acetylation may be a way of getting additional functions out of a limited number of proteins: by tweaking each protein in several ways, enabling it to perform a variety of tasks.

And, as more complex cells like our own share the same protein-tweaking tactics, it is probably an ancient strategy that evolved before our branch of the evolutionary tree and M.pneumoniae’s branched their separate ways.

The scientists also found that phosphorylation levels in M. pneumoniae control how much of each protein the bacterium has. Interestingly, it does so not only by influencing whether protein-building instructions encoded in DNA are read, but also by altering proteins that are involved in building other proteins. This fine-tuning may enable the cell to react faster to changing needs or situations.

When they disrupted M. pneumoniae’s ability to tweak proteins, Gavin, Bork and colleagues also discovered that disaster doesn’t necessarily ensue. As in our own cells, proteins in this bacterium rarely work alone. They interact with each other, work together, or perform different steps in chain reactions. The scientists found that these protein networks have a certain buffering ability: disrupting one protein can affect its immediate partners, but the problems may not propagate throughout the whole network. The scientists hope that mapping the different networks may one day enable them to predict where a targeted disruption might do the most damage, which could eventually provide valuable information for drug design.

The work, published online today in Molecular Systems Biology, was conducted in collaboration with the Centro de Regulacion Genomica in Barcelona, Spain, Utrecht University in the Netherlands, and Georg-August University Göttingen and Heidelberg University, both in Germany.

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>