Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Making the most of what you have

Bacterium fine-tunes proteins for enhanced functionality
The bacterium Mycoplasma pneumoniae, which causes atypical pneumonia, is helping scientists uncover how cells make the most of limited resources. By measuring all the proteins this bacterium produces, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and collaborators, have found that the secret is fine-tuning.

Like a mechanic can fine-tune a car after it has left the factory, cells have ways to tweak proteins, changing their chemical properties after production – so-called post-translational modifications. Anne-Claude Gavin, Peer Bork and colleagues at EMBL measured how many of M. pneumoniae’s proteins had certain modifications.

They found that two forms of tweaking which were known to be common in our own cells are equally prevalent in this simple bacterium. Called phosphorylation and lysine acetylation, these two types of post-translational modification also talk to and interfere with each other: the scientists found that disrupting one can cause changes in the other. Since M. pneumoniae is one of the living organisms with the fewest different proteins, this interplay between phosphorylation and lysine acetylation may be a way of getting additional functions out of a limited number of proteins: by tweaking each protein in several ways, enabling it to perform a variety of tasks.

And, as more complex cells like our own share the same protein-tweaking tactics, it is probably an ancient strategy that evolved before our branch of the evolutionary tree and M.pneumoniae’s branched their separate ways.

The scientists also found that phosphorylation levels in M. pneumoniae control how much of each protein the bacterium has. Interestingly, it does so not only by influencing whether protein-building instructions encoded in DNA are read, but also by altering proteins that are involved in building other proteins. This fine-tuning may enable the cell to react faster to changing needs or situations.

When they disrupted M. pneumoniae’s ability to tweak proteins, Gavin, Bork and colleagues also discovered that disaster doesn’t necessarily ensue. As in our own cells, proteins in this bacterium rarely work alone. They interact with each other, work together, or perform different steps in chain reactions. The scientists found that these protein networks have a certain buffering ability: disrupting one protein can affect its immediate partners, but the problems may not propagate throughout the whole network. The scientists hope that mapping the different networks may one day enable them to predict where a targeted disruption might do the most damage, which could eventually provide valuable information for drug design.

The work, published online today in Molecular Systems Biology, was conducted in collaboration with the Centro de Regulacion Genomica in Barcelona, Spain, Utrecht University in the Netherlands, and Georg-August University Göttingen and Heidelberg University, both in Germany.

Sonia Furtado Neves | EMBL Research News
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>