Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New way to make malaria medicine also first step in finding new antibiotics

University of Illinois microbiology professor William Metcalf and his collaborators have developed a way to mass-produce an antimalarial compound, potentially making the treatment of malaria less expensive.

Metcalf set out to understand how this compound, one of a group known as phosphonates, is made in nature by bacteria. He was interested in that process partly because some phosphonates have antibiotic properties. Recently, Metcalf and his lab successfully identified and sequenced the genes and identified the processes by which bacteria make this particular phosphonate compound (FR900098).

His results are reported in the August 25 issue of Chemistry & Biology.

Although the compound has already been chemically synthesized, that is a costly process. By knowing how this phosphonate is biosynthesized, it can now be inexpensively mass-produced by harnessing the cellular machinery of bacteria.

"Malaria is a problem in Third World countries that can least afford expensive medicines, and many antibiotics are expensive," Metcalf said.

Efforts are already underway by Metcalf's colleague, chemical engineering professor Huimin Zhao, to engineer E. coli strains to overproduce FR900098, which can then be harvested for medicine.

In addition, says Metcalf, knowing the genes and understanding the pathway that bacteria use to make this antimalarial means the genes can be manipulated to make the compound even more effective against the malaria parasite while remaining harmless to people.

This effort to help treat malaria is just one facet of a major undertaking to find new antibiotics. Last year Metcalf and his colleagues at the U. of I.'s Institute for Genomic Biology, chemistry professor Wilfred van der Donk, Zhao, chemistry professor Neil Kelleher, and biochemistry professor Satish Nair, received a $7.3 million grant from the National Institutes of Health to investigate just this. Jo Handelsman of the University of Wisconsin rounds out the research team.

The need for new antibiotics is at an all-time high because multi-drug resistant bacteria are appearing even outside hospital settings. Consequently, infections that used to be easily curable have become more difficult to treat. For example, tuberculosis has become so resistant to antibiotics that soon "they'll send you to Arizona to drier air, like they did before they had antibiotics," Metcalf said.

In the case of malaria, the World Health Organization's "World Malaria Report 2008" estimates that "half of the world's population is at risk of malaria, and an estimated 247 million cases led to nearly 881,000 deaths in 2006."

Resistance to classic drugs such as chloroquine and sulphadoxine-pyrimethamine is on the rise, and mosquitoes also are developing resistance to insecticides.

"In my opinion malaria is the biggest single infectious disease problem in the world," Metcalf said.

The World Health Organization now advocates treating malaria with multiple antibiotics simultaneously, to combat the parasites' ability to develop resistance.

"In an infection, the chances are high that one in 10 million parasites in the patient's body will become resistant to a given drug," Metcalf said. "Now, if a patient takes a second drug simultaneously, one in 10 million parasites also becomes resistant to that drug. However, the odds that the same parasite will develop a resistance to both drugs is one in 10 million times one in 10 million, or 10 to the 14th."

This combination therapy approach is how HIV-AIDS, tuberculosis and other diseases are now treated. In the case of malaria, combination therapy both cures the patient and prevents wider infection, since an uninfected mosquito can acquire (and spread) the parasite by biting an infected person. But in many places where malaria is endemic, this approach is not used, in part because of the cost of medicine.

By making medicines more affordable it increases the chances that they will be used in the most effective way possible, that is to say, in combination with one another.

Metcalf became interested in anti-malarial medicine because of his interest in phosphonates, molecules that contain direct chemical bonds between carbon and phosphorus atoms (as opposed to the carbon-to-oxygen-to-phosphorus bonds that are found in most biological molecules containing phosphorus). As a doctoral student he characterized how microbes metabolized phosphonic acid in glyphosate, known commercially as RoundUp. He began to wonder where this class of compounds comes from and how it is made in nature.

In addition to sequencing the genes that make FR900098, Metcalf and his colleagues are focused on determining just how many naturally occurring phosphonic acids, or phosphonates, there are that have useful antibiotic, antifungal or anti-cancer properties.

The scientific community has known since the 1970s that bacteria routinely produce these types of phosphonates, in a kind of natural biological warfare.

"If you are a bacterium and you can kill off your neighbors you're better off yourself. It's kill or be killed," Metcalf said.

However, until now no one has done a systematic search for phosphonates in nature. Phosphonates work by disrupting biological pathways that use phosphate esters and organic acids. Each phosphonate disrupts a particular pathway. For example, FR900098 inhibits the pathway that creates isoprenoids, building blocks for important cellular components. When the parasites that cause malaria were discovered by others to have a pathway that FR900098 could disrupt, researchers saw a way to put the compound to good use. That same biosynthetic pathway does not exist in animals, which have a different way of making isoprenoids.

Understanding these pathways "opens the door to finding other antibiotics in this class of compounds. The more we can understand about these pathways the better we can find unknown phosphonates with antibiotic properties," Metcalf said.

His lab has developed a directed strategy to clone and sequence the genes that are required for phosphonate synthesis in bacteria, making the search efficient and exhaustive. Metcalf is optimistic that he and others will be able to mine phosphonates for other antibiotics.

"We've grown up in the Golden Age of antibiotics," he said. "But now kids can come home with an infection in their arm that can't be treated. And what happens if you can't treat it? You may have to amputate the arm. This is no joke; we better find new treatments."

Melissa Edwards | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>