Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major Discovery Helps Explain How the Adult Brain Cleans out Dead Brain Cells and Produces New Ones

12.08.2011
Adult brains generate thousands of new brain cells called neurons each day; however only a small fraction of them survive. The rest die and are consumed by scavenger cells called phagocytes. Until now, scientists have not fully understood how this process works, which phagocytes are unique in the brain, and how the removal of dead neurons influences the production of new neurons.

In humans, neurogenesis, or the formation of new neurons, largely ceases in most areas of the brain during adulthood. However, in two brain areas there is strong evidence that substantial numbers of new neurons are naturally generated (in the hippocampus, which is involved in memory forming, organizing and storing, and the olfactory bulb, involved in the perception of odors).

UVA Health System researchers have made a pivotal discovery in understanding this complicated process, and their findings could one day help scientists devise novel therapies to promote neurogenesis in the adult brain and re-establish its function in patients suffering from depression, post-traumatic stress disorder, and other mental disorders, in which adult neurogenesis is impaired .

The findings appear in a study published online July 31, 2011 in the journal Nature Cell Biology and led by two UVA researchers -- Jonathan Kipnis, PhD, associate professor of neuroscience, and Kodi S. Ravichandran, PhD, chair of the UVA Department of Microbiology and director of the UVA Center for Cell Clearance. Zhenjie Lu, PhD, is the first author on this work and was instrumental in combining the methodologies in the Kipnis lab (which focuses on basic mechanisms underlying neurological disorders) and the Ravichandran lab (which focuses on cell clearance) to address adult neurogenesis through a combination of in vivo studies in normal and genetically altered mice, and ex vivo studies using neuronal cultures.

Through their research, UVA scientists discovered that certain types of progenitor cells, called the doublecortin (DCX)-positive neuronal progenitors (or “newborn neurons”), serve a dual role in the regulation of production and elimination of new brain cells. Progenitor cells generally act as a repair system for the body, replenishing special cells and maintaining blood, skin and intestinal tissues. This new discovery points to the ability of these cells to clean each other out, which ultimately benefits the regeneration process.

“Our study provides the first evidence that DCX+ cells, in addition to serving their function as neuronal precursors in the brain, also function as phagocytes [scavenger cells] by clearing out their dead brethren -- and that this process is required to maintain continuous generation of new neurons in the brain,” says Kipnis.

“These findings raise the possibility that this newly discovered process could be manipulated to rejuvenate the brain by regulating the addition of new neurons,” says Ravichandran.

This discovery, Kipnis adds, also could shed new light on our understanding of how the process of adult neurogenesis is regulated in the healthy brain, and in turn provide insights on diseased brains, where adult neurogenesis is severely impaired.

“The birth and death of new neurons in the adult brain have been implicated in ongoing learning and memory,” says Kevin Lee, PhD, chair of the Department of Neuroscience and professor of neurological surgery. “The findings by Kipnis, Ravichandran, Lu and associates are fascinating, because they describe a novel process regulating the production and removal of adult-born neurons. This represents an important step toward identifying mechanisms that might be manipulated to control the number of new neurons in the adult brain. Regulating new adult neurons in this manner could open a novel avenue for modifying basic cognitive functions, including learning.”

Sally H. Jones | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>