Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major Alzheimer’s Risk Gene Causes Alterations in Shapes of Brain Protein Deposits

16.07.2010
Researchers at Mount Sinai School of Medicine have used a newly discovered class of biomarkers to investigate the possibility that the shape of brain protein deposits is different in people with Alzheimer’s who have the highest-risk gene type than in those with the condition who have a neutral risk gene type. The study is being presented July 14 at the 2010 Alzheimer’s Association International Conference on Alzheimer's Disease in Honolulu, Hawaii.

Sam Gandy, MD, PhD, the Mount Sinai Professor in Alzheimer’s Disease Research, Professor of Neurology and Psychiatry, and Associate Director of the Alzheimer’s Disease Research Center at Mount Sinai School of Medicine, led the study. Mount Sinai labs led by Patrick R. Hof, MD, Regenstreif Professor of Neuroscience and Vice-Chair for Translational Neuroscience of the Department of Neuroscience and Dara L. Dickstein, PhD, Assistant Professor, Neuroscience also collaborated on the study.

Apolipoprotein E (APOE) is a gene containing instructions needed to make a protein that helps carry cholesterol in the bloodstream. The APOE gene, which comes in several different forms, is related to increased risk of developing Alzheimer’s disease. People with APOE ε4/ε4 gene type have the highest risk of developing the disease and people with APOE ε3/ε3 have a neutral risk. Discovering the important mechanisms underlying how APOE ε4/ε4 increases Alzheimer’s risk has been one of the most vexing mysteries facing Alzheimer’s researchers for over a decade.

Luminescent conjugated oligothiophenes (LCOs) or luminescent conjugated polymers (LCPs), the newly discovered class of biomarkers, can stick to protein structures in the body and emit colors reflecting the different shapes or forms of the proteins. Among other uses, LCPs/LCOs are currently being employed in test tubes, animal models, and autopsied Alzheimer’s brains to study the structure of proteins deposits caused by the disease. The new markers bind to the two well-established hallmarks of Alzheimer’s – beta amyloid plaques and tau tangles – and glow different colors depending on which forms of the deposits they “stick” to (e.g., plaques often “glow” orange, while tangles “glow” yellowish green).

In the study, frozen brain sections from people who died with Alzheimer’s were stained using two LCPs/LCOs: pentamer formyl thiophene acetic acid (pFTAA) and polythiophene acetic acid (PTAA). Using PTAA, the researchers observed that Alzheimer patients with APOE ε4/ε4 gene type had core and cerebrovascular amyloid of different shapes, while in people with APOE ε3/ε3, the two amyloid structures had the same shape. Using pFTAA revealed that tau tangle densities in ε4/ε4 Alzheimer patients that were apparently greater than those with ε3/ε3.

“The findings support our hypothesis that APOE genotype changes amyloid structure,” Dr. Gandy said. “This is important because the different shapes might respond differently to treatments that attempt to clear amyloid deposits from the brain. We already know, for example, that APOE ε4/ε4 patients respond less well to anti-amyloid antibody with bapineuzumab.”

LCOs/LCPs were pioneered by Peter Nilsson, PhD, Assistant Professor of the Department of Chemistry, Linköping University, Sweden. The study also involved collaborating teams from Charité – Universitätsmedizin Berlin, Germany, led by Frank Heppner MD, Director of the Department of Neuropathology and Washington University, St Louis, led by David Holtzman MD, Professor and Chair of Neurology.

About The Mount Sinai Medical Center
The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation’s oldest, largest and most-respected voluntary hospitals. In 2009, U.S. News & World Report ranked The Mount Sinai Hospital among the nation’s top 20 hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

For more information, visit www.mountsinai.org. Follow us on Twitter @mountsinainyc.

About AAICAD
The Alzheimer’s Association International Conference on Alzheimer's Disease (AAICAD) brings together 4,000 researchers from around the world to report and discuss groundbreaking research and information on the cause, diagnosis, treatment and prevention of Alzheimer’s disease and related disorders. As a part of the Alzheimer’s Association’s research program, AAICAD serves as a catalyst for generating new knowledge about dementia and fostering a vital, collegial research community.
About the Alzheimer’s Association
The Alzheimer’s Association is the leading voluntary health organization in Alzheimer care, support and research. Our mission is to eliminate Alzheimer’s through the advancement of research, to provide and enhance care and support for all affected, and to reduce the risk of dementia through the promotion of brain health. Our vision is a world without Alzheimer’s. Visit www.alz.org or call 800-272-3900.

Mount Sinai Press Office | Newswise Science News
Further information:
http://www.mountsinai.org

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>