Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz University obtains new DFG-CRC on "Nanodimensional polymer therapeutics for tumor therapy"

31.05.2013
Mainz chemists and physicians develop nanoparticle-based immunotherapy for cancer

The German Research Foundation (DFG) has established a new Collaborative Research Center on "Nanodimensional polymer therapeutics for tumor therapy" (CRC 1066) at Johannes Gutenberg University Mainz (JGU) and the Max Planck Institute for Polymer Research (MPI-P). Starting in October 2013, the Collaborative Research Center will receive grants totaling approximately EUR 11 million over four years to develop a nanoparticle-based cancer therapy to combat melanoma as an immunogenic tumor model.

The Mainz scientists will focus on a form of cancer immunotherapy that is specifically suitable for permanently eliminating minimal residual disease, such as hidden metastases. The new CRC is notable for its interdisciplinary approach: chemists will study the synthetic feasibility and the structure-property relationships of carrier materials, while immunologists and biomedical specialists develop models for the optimal use of such carriers – in the form of a new combination therapy for activating the body’s immune response against the cancer.

The coordinator of the new DFG-funded Collaborative Research Center is Professor Rudolf Zentel from the Institute of Organic Chemistry at Johannes Gutenberg University Mainz. Assistant coordinators are Professor Stephan Grabbe from the Department of Dermatology at the Mainz University Medical Center and Professor Katharina Landfester from the Max Planck Institute for Polymer Research in Mainz. In addition, the Board of Directors will include Professor Detlef Schuppan from the Department of Internal Medicine I at the Mainz University Medical Center and Dr. Mathias Barz from the JGU Institute of Organic Chemistry as a representative of young researchers.

The combination of the expertise of Johannes Gutenberg University Mainz and the Max Planck Institute for Polymer Research, one of the leading sites for polymer chemistry in Germany, together with the excellent research structure in the area of tumor immunotherapy at the Mainz University Medical Center, will enable the new CRC to conduct research at the broadest level. "This new Collaborative Research Center will bring together these very strong research areas to create new medical challenges for natural scientists as well as to provide medical research with a stronger natural scientific orientation," said the coordinator of the CRC, Professor Rudolf Zentel.
"Researchers from the field of chemistry, alongside immunologists and biomedical specialists, will develop novel, multifunctional, nanodimensional therapeutic agents with the aim of releasing agents and combinations of agents in as cell-specific a way as possible, and to also make it possible to make very sensitive agents, such as RNA, therapeutically usable. In an intensively interdisciplinary process, we will combine innovative therapeutic approaches from immunology and oncology with the synthesis of a broad array of well-characterized, suitably functional polymeric nanoparticles with clear physicochemical characterization in the biological environment."

For the chemists, the challenge is to synthesize well-defined polymeric carrier systems and to modify them, render them functional, and to load them with suitable therapeutic agents. Building on these initial synthetic steps, the scientists will go on to test these carrier systems in cross-sectional projects with respect to their interactions in extracellular media, cellular uptake, and distribution in the body. "Our biomedical specialists will then test these systems in combined tumor immunotherapy based on the targeted induction of inflammation in the tumor, stimulation of the immune response, and neutralization of tumor tolerance," said Professor Stephan Grabbe, Director of the Department of Dermatology at the Mainz University Medical Center.

"This Collaborative Research Center is the fruit of decades of excellent research achievements by Mainz scientists in chemistry and medicine and demonstrates the success of building profiles and specialties in science and research at our university," said the President of Johannes Gutenberg University Mainz, Professor Georg Krausch. Mainz has distinguished itself through its many years of successful activity in the field of polymer research and its current work in CRC 625: From single molecules to nanoscale structured materials, Mainz has become renowned for its great expertise in creating and characterizing the physicochemical nature of nanoparticular systems. This makes it possible to create narrowly distributed functional polymer structures and to investigate their aggregate formation in a biological context. In addition, the new CRC will benefit from extensive expertise in the organic chemistry of natural substances, concentrated in the Center for the Synthesis of Natural Products, which is funded by the federal state of Rhineland-Palatinate, BASF and Boehringer Ingelheim and which contributes to the knowledge of linkers and identification structures as well as a radiopharmaceutical division with outstanding chemical processing options, for example in the field of labeling chemistry and in vivo imaging using PET at the JGU Institute of Nuclear Chemistry. The Max Planck Institute for Polymer Research is also a competent partner for the synthesis and characterization of polymeric carriers.

The Mainz University Medical Center has established a specialty area in immunology with experience in immunotherapy as well as a Center for Translational Oncology (TRON) in combination with new spin-off firms, such as GANYMED, which can supply anti-tumor antibodies. Overall, there is a longstanding tradition of basic research in tumor immunology at the Mainz University Medical Center with the development of new concepts in tumor immunotherapy, culminating in clinical trials focused on melanoma, for example, in Collaborative Research Center 432, which concentrates on tumor immunology and experimental therapy. In addition, the Center for Natural Sciences and Medicine, headed by Professor Stephan Grabbe, has encouraged similar kinds of collaboration between medicine and the natural sciences at Johannes Gutenberg University Mainz for more than 30 years.

"The new Collaborative Research Center shows that it makes sense to encourage the development of strong network structures in Mainz and the region. The concept of the CRC is promising because initial successes, specifically in melanoma treatment, have demonstrated that this treatment concept may contribute to making it possible in the future to successfully treat cancers that are now incurable," emphasized Professor Förstermann, Chief Scientific Officer of the Mainz University Medical Center.

Further information:
Professor Rudolf Zentel
Institute of Organic Chemistry
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-20361
fax +49 6131 39-24778
e-mail: zentel@uni-mainz.de

Professor Stephan Grabbe
Director of the Department of Dermatology
Medical Center of Johannes Gutenberg University Mainz
D 55131 Mainz
phone +49 6131 17-4412
e-mail: stephan.grabbe@unimedizin-mainz.de

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/16451_ENG_HTML.php

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>