Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz University installs a new particle accelerator

05.01.2016

New cyclotron produces radioactive isotopes for nuclear chemistry to be applied in basic research and the development of clinical applications

A new particle accelerator will further enhance the research landscape at Johannes Gutenberg University Mainz (JGU). It is to be employed to conduct research into potential applications of medical relevance. The new cyclotron has been installed in a basement structure of the Institute of Nuclear Chemistry on the Gutenberg Campus.


Installation of the cyclotron on the campus of Johannes Gutenberg University Mainz

photo/©: Heinz-Martin Schmidt

It will be used to generate short half-life isotopes, which will be principally used for fundamental research but are also required for the medical imaging technique known as positron emission tomography (PET). The cost of this large-scale research device amounts to about EUR 1 million provided by the German Research Foundation (DFG) and the Rhineland-Palatinate Research Initiative. Commissioning of the new cyclotron is planned for spring 2016.

The cyclotron is a ring-shaped particle accelerator that occupies a floor space of some 7.5 square meters and has a height of two meters. It weighs about 50 tons and a crane had to be used to lower it through a hole in the ceiling into the designated basement room. In addition to the cyclotron room, the new structure has a technical and control center together with an access lock. The structure is linked directly to the Institute of Nuclear Chemistry extension building and has all safety-relevant features.

As it will be able to accelerate protons to an energy of 9.7 mega-electron volts (MeV), the cyclotron at Mainz University can be used to generate the two radioactive elements fluorine-18 and carbon-11. These will be mainly employed for chemical and pharmaceutical research purposes but are also necessary for the PET medical diagnostic imaging technique.

F-18 and C-11 have short half-lives of just 110 and 20 minutes respectively. It is thus necessary to generate them near the location at which they are to be used to ensure that they are available in sufficient quantities. It has not previously been possible in Mainz to create radiopharmaceuticals labeled with C-11 because of its particularly short half-life. The new accelerator has now made this feasible.

"The cyclotron will enhance our currently existing infrastructure and eliminate a bottleneck in the production of radioactive nuclides," explained Professor Frank Rösch of the JGU Institute of Nuclear Chemistry. "It will significantly facilitate the development of new radiopharmaceuticals and their preclinical evaluation while – working in collaboration with the Department of Nuclear Medicine at the Mainz University Medical Center – we will be able to markedly expedite their future application in patient diagnosis."

There are additional benefits to be expected through interdisciplinary joint projects in which the areas of nuclear chemistry, pharmaceutical sciences, organic chemistry, and nuclear medicine at JGU will collaborate with regard to the development and evaluation of new PET radiopharmaceuticals, in some cases also with external institutions such as the Department of Psychiatry, Psychotherapy, and Psychosomatics at RWTH Aachen and the Mainz-based Max Planck Institute for Polymer Research.

Photos:
http://www.uni-mainz.de/bilder_presse/09_kernchemie_zyklotron_einbau_01.jpg
Installation of the cyclotron on the campus of Johannes Gutenberg University Mainz
photo/©: Heinz-Martin Schmidt

http://www.uni-mainz.de/bilder_presse/09_kernchemie_zyklotron_einbau_02.jpg
Installment of a cyclotron door into the newly constructed cyclotron building
photo/©: Heinz-Martin Schmidt

http://www.uni-mainz.de/bilder_presse/09_kernchemie_zyklotron_einbau_03.jpg
(fltr) Professor Tobias Reich (Managing Director of the Institute of Nuclear Chemistry), Professor Norbert Trautmann (Institute of Nuclear Chemistry), Dr. Waltraud Kreutz-Gers (Chancellor of Johannes Gutenberg University Mainz), Professor Georg Krausch (President of Johannes Gutenberg University Mainz), and Professor Frank Rösch (Institute of Nuclear Chemistry) observing the installation of the new cyclotron
photo/©: Heinz-Martin-Schmidt

Further information
Professor Dr. Frank Rösch
Institute of Nuclear Chemistry
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25302
fax +49 6131 39-24692
e-mail: frank.roesch@uni-mainz.de
http://www.kernchemie.uni-mainz.de/radiopharmazie-roesch/117_ENG_HTML.php

Related links:
http://www.kernchemie.uni-mainz.de – Institute of Nuclear Chemistry
http://www.uni-mainz.de/presse/19663_ENG_HTML.php – press release "German Research Foundation, Rhineland-Palatinate, and Mainz University invest more than
EUR 2 million in a cyclotron and its building complex" (19 October 2015)

Weitere Informationen:

http://www.uni-mainz.de/presse/20010_ENG_HTML.php - press release ;
http://www.kernchemie.uni-mainz.de/eng/index.php - Institute of Nuclear Chemistry ;
http://www.uni-mainz.de/presse/19663_ENG_HTML.php - press release "German Research Foundation, Rhineland-Palatinate, and Mainz University invest more than EUR 2 million in a cyclotron and its building complex" (19 Oct. 2015)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>