Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mainz University installs a new particle accelerator


New cyclotron produces radioactive isotopes for nuclear chemistry to be applied in basic research and the development of clinical applications

A new particle accelerator will further enhance the research landscape at Johannes Gutenberg University Mainz (JGU). It is to be employed to conduct research into potential applications of medical relevance. The new cyclotron has been installed in a basement structure of the Institute of Nuclear Chemistry on the Gutenberg Campus.

Installation of the cyclotron on the campus of Johannes Gutenberg University Mainz

photo/©: Heinz-Martin Schmidt

It will be used to generate short half-life isotopes, which will be principally used for fundamental research but are also required for the medical imaging technique known as positron emission tomography (PET). The cost of this large-scale research device amounts to about EUR 1 million provided by the German Research Foundation (DFG) and the Rhineland-Palatinate Research Initiative. Commissioning of the new cyclotron is planned for spring 2016.

The cyclotron is a ring-shaped particle accelerator that occupies a floor space of some 7.5 square meters and has a height of two meters. It weighs about 50 tons and a crane had to be used to lower it through a hole in the ceiling into the designated basement room. In addition to the cyclotron room, the new structure has a technical and control center together with an access lock. The structure is linked directly to the Institute of Nuclear Chemistry extension building and has all safety-relevant features.

As it will be able to accelerate protons to an energy of 9.7 mega-electron volts (MeV), the cyclotron at Mainz University can be used to generate the two radioactive elements fluorine-18 and carbon-11. These will be mainly employed for chemical and pharmaceutical research purposes but are also necessary for the PET medical diagnostic imaging technique.

F-18 and C-11 have short half-lives of just 110 and 20 minutes respectively. It is thus necessary to generate them near the location at which they are to be used to ensure that they are available in sufficient quantities. It has not previously been possible in Mainz to create radiopharmaceuticals labeled with C-11 because of its particularly short half-life. The new accelerator has now made this feasible.

"The cyclotron will enhance our currently existing infrastructure and eliminate a bottleneck in the production of radioactive nuclides," explained Professor Frank Rösch of the JGU Institute of Nuclear Chemistry. "It will significantly facilitate the development of new radiopharmaceuticals and their preclinical evaluation while – working in collaboration with the Department of Nuclear Medicine at the Mainz University Medical Center – we will be able to markedly expedite their future application in patient diagnosis."

There are additional benefits to be expected through interdisciplinary joint projects in which the areas of nuclear chemistry, pharmaceutical sciences, organic chemistry, and nuclear medicine at JGU will collaborate with regard to the development and evaluation of new PET radiopharmaceuticals, in some cases also with external institutions such as the Department of Psychiatry, Psychotherapy, and Psychosomatics at RWTH Aachen and the Mainz-based Max Planck Institute for Polymer Research.

Installation of the cyclotron on the campus of Johannes Gutenberg University Mainz
photo/©: Heinz-Martin Schmidt
Installment of a cyclotron door into the newly constructed cyclotron building
photo/©: Heinz-Martin Schmidt
(fltr) Professor Tobias Reich (Managing Director of the Institute of Nuclear Chemistry), Professor Norbert Trautmann (Institute of Nuclear Chemistry), Dr. Waltraud Kreutz-Gers (Chancellor of Johannes Gutenberg University Mainz), Professor Georg Krausch (President of Johannes Gutenberg University Mainz), and Professor Frank Rösch (Institute of Nuclear Chemistry) observing the installation of the new cyclotron
photo/©: Heinz-Martin-Schmidt

Further information
Professor Dr. Frank Rösch
Institute of Nuclear Chemistry
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25302
fax +49 6131 39-24692

Related links: – Institute of Nuclear Chemistry – press release "German Research Foundation, Rhineland-Palatinate, and Mainz University invest more than
EUR 2 million in a cyclotron and its building complex" (19 October 2015)

Weitere Informationen: - press release ; - Institute of Nuclear Chemistry ; - press release "German Research Foundation, Rhineland-Palatinate, and Mainz University invest more than EUR 2 million in a cyclotron and its building complex" (19 Oct. 2015)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>