Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz University employs 3-D projector to demonstrate latest methods of computer-aided drug design

03.06.2015

Gutenberg Teaching Council of Johannes Gutenberg University Mainz supports project in Pharmaceutical Sciences with about EUR 60,000

Students of Pharmaceutical Sciences at Johannes Gutenberg University Mainz (JGU) can now opt for taking a more research-oriented approach to their subject by exploring the latest techniques to create new active drug substances.


Students of Pharmaceutical Sciences and Biomedical Chemistry attending a lecture on computer-aided drug design at Johannes Gutenberg University Mainz

photo/©: Peter Pulkowski, JGU

In lectures and practical courses, they learn about a selection of computer-based methods that the pharmaceutical industry already routinely uses for computer-aided drug design. Computer-aided drug design (CADD) is one of the mainstays of modern drug development.

Therefore, JGU's Institute of Pharmaceutical Sciences and Biochemistry has recently acquired a 3-D projector that visually demonstrates to students how drugs interact with their target structures in the body, i.e., proteins.

"Our objective is to introduce all students of Pharmaceutical Sciences and Biomedical Chemistry to the basics of computer-aided drug design because this method is now in standard use in the pharmaceutical industry. It is also an integral part of our research here at the institute," explained Junior Professor Ruth Brenk, who initiated the project.

The Gutenberg Teaching Council (GTC) of Mainz University has provided nearly EUR 60,000 to support this research-oriented teaching project. The fact that the students are queuing up to take part in the elective module on CADD demonstrates that this was a worthwhile investment in modern learning and teaching.

The new setup of 3-D projections is used in seminars and lectures and has been put together by the institute itself using a projector, software, and a graphics card. Equipped with 3-D glasses, students can follow on a special metalized silver screen how and where proteins, with their three-dimensional structure, provide an access point for drugs, and how protein and ligand interact.

"Through demonstrations and through practical exercises and, of course, with the relevant teaching support, students can be made sufficiently familiar with the new techniques in a relatively short period of time so that they can then apply these themselves to independently work on current research topics", Brenk summarized the advantages. CAAD lectures and practical courses have since become standard parts of the course of study at the Institute of Pharmaceutical Sciences and Biochemistry at Mainz University.

Further information:
Junior Professor Dr. Ruth Brenk
Institute of Pharmaceutical Sciences and Biochemistry – Therapeutic Life Sciences
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25726
fax +49 6131 39-25670
e-mail: brenk@uni-mainz.de

Weitere Informationen:

http://www.uni-mainz.de/presse/19406_ENG_HTML.php - press release ;
http://www.pharmazie.uni-mainz.de/index_eng.php - Institute of Pharmacy and Biochemistry – Therapeutical Life Sciences ;
http://www.pharmazie.uni-mainz.de/AK-Brenk/ - Brenk Group ;
http://www.glk.uni-mainz.de/index_ENG.php - Gutenberg Teaching Council (GTC)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>