Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz University employs 3-D projector to demonstrate latest methods of computer-aided drug design

03.06.2015

Gutenberg Teaching Council of Johannes Gutenberg University Mainz supports project in Pharmaceutical Sciences with about EUR 60,000

Students of Pharmaceutical Sciences at Johannes Gutenberg University Mainz (JGU) can now opt for taking a more research-oriented approach to their subject by exploring the latest techniques to create new active drug substances.


Students of Pharmaceutical Sciences and Biomedical Chemistry attending a lecture on computer-aided drug design at Johannes Gutenberg University Mainz

photo/©: Peter Pulkowski, JGU

In lectures and practical courses, they learn about a selection of computer-based methods that the pharmaceutical industry already routinely uses for computer-aided drug design. Computer-aided drug design (CADD) is one of the mainstays of modern drug development.

Therefore, JGU's Institute of Pharmaceutical Sciences and Biochemistry has recently acquired a 3-D projector that visually demonstrates to students how drugs interact with their target structures in the body, i.e., proteins.

"Our objective is to introduce all students of Pharmaceutical Sciences and Biomedical Chemistry to the basics of computer-aided drug design because this method is now in standard use in the pharmaceutical industry. It is also an integral part of our research here at the institute," explained Junior Professor Ruth Brenk, who initiated the project.

The Gutenberg Teaching Council (GTC) of Mainz University has provided nearly EUR 60,000 to support this research-oriented teaching project. The fact that the students are queuing up to take part in the elective module on CADD demonstrates that this was a worthwhile investment in modern learning and teaching.

The new setup of 3-D projections is used in seminars and lectures and has been put together by the institute itself using a projector, software, and a graphics card. Equipped with 3-D glasses, students can follow on a special metalized silver screen how and where proteins, with their three-dimensional structure, provide an access point for drugs, and how protein and ligand interact.

"Through demonstrations and through practical exercises and, of course, with the relevant teaching support, students can be made sufficiently familiar with the new techniques in a relatively short period of time so that they can then apply these themselves to independently work on current research topics", Brenk summarized the advantages. CAAD lectures and practical courses have since become standard parts of the course of study at the Institute of Pharmaceutical Sciences and Biochemistry at Mainz University.

Further information:
Junior Professor Dr. Ruth Brenk
Institute of Pharmaceutical Sciences and Biochemistry – Therapeutic Life Sciences
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25726
fax +49 6131 39-25670
e-mail: brenk@uni-mainz.de

Weitere Informationen:

http://www.uni-mainz.de/presse/19406_ENG_HTML.php - press release ;
http://www.pharmazie.uni-mainz.de/index_eng.php - Institute of Pharmacy and Biochemistry – Therapeutical Life Sciences ;
http://www.pharmazie.uni-mainz.de/AK-Brenk/ - Brenk Group ;
http://www.glk.uni-mainz.de/index_ENG.php - Gutenberg Teaching Council (GTC)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>