Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz scientists confirm original tetrahedral model of the molecular structure of water

12.02.2013
Resolution of controversy about structure of liquid water

Researchers at Johannes Gutenberg University Mainz (JGU) have confirmed the original model of the molecular structure of water and have thus made it possible to resolve a long-standing scientific controversy about the structure of liquid water.


Model of a symmetrical four bond water molecule (oxygen red and hydrogen white)

ill./©: Thomas D. Kühne

The tetrahedral model was first postulated nearly 100 years ago and it assumes that every water molecule forms a so-called hydrogen bond with four adjacent molecules. This concept was almost toppled in 2004 when an international research group announced that it had experimentally established that water molecules form bonds only with two other molecules.

"The quality of the results was excellent but they merely represent a snapshot of the situation," explained Professor Dr. Thomas Kühne. He has demonstrated the fallacy of the 'double bonding' theory using computer simulations based on new types of combinations of two computational methods recently developed by his group.

Some very special and unique features of water, such as its liquid aggregate state and high boiling point, are attributable to the effect of the hydrogen bonds between the water molecules. The H bonds are formed due to the different charges carried by the oxygen and hydrogen atoms that make up water molecules and the resultant dipolar structure. The traditional, generally accepted view was that water had a tetrahedral structure at room temperature, so that on average each water molecule would be linked with four adjacent molecules via two donor and two acceptor bonds. "In our theoretical approach, the median result we observed over time was always for quadruple bonding," said Kühne. Thanks to the new simulations, he and his colleague Dr. Rhustam Khaliullin have now been able to confirm the old model and also supply an explanation for why double bonding was observed in 2004. According to Kühne, the result was not indicative of double bonding "but of instantaneous asymmetrical fluctuation" only.

There is thus significant asymmetry in the four H bonds of the tetrahedral model because of the different energy of the contacts. This asymmetry is the result of temporary disruptions to the hydrogen bond network, which take the form of extremely short term fluctuations occurring on a timescale of 100 to 200 femtoseconds. These fluctuations mean that one of the two donor or acceptor bonds is temporarily much stronger than the other. But these fluctuations precisely cancel each other out so that, on average over time, the tetrahedral structure is retained.

The results reported in 2004 using x-ray absorption spectroscopy were obtained using water molecules with high levels of momentary asymmetry, which is why essentially only two strong hydrogen bonds were observed in an otherwise tetrahedral structure. "Our findings have important implications as they help reconcile the symmetric and asymmetric views on the structure of water," write the scientists in an article published in Nature Communications. The results may also be relevant to research into molecular and biological systems in aqueous solutions and provide insight into protein folding, for example.

The work of Thomas Kühne's group was undertaken within an interdisciplinary joint project and was funded by the Research Unit Center for Computational Sciences at Johannes Gutenberg University Mainz.

Publication:
Thomas D. Kühne, Rustam Z. Khaliullin
Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water
Nature Communications, February 2013
doi:10.1038/ncomms2459
http://www.nature.com/ncomms/journal/v4/n2/full/ncomms2459.html

Further information:
Junior Professor Dr. Thomas D. Kühne
Institute of Physical Chemistry
Research Unit Center for Computational Sciences
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-23699
e-mail: kuehne@uni-mainz.de
http://www.tc.uni-mainz.de/index-Dateien/Page376.html
http://www.csm.uni-mainz.de/eng/242.php

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/16217_ENG_HTML.php
http://www.nature.com/ncomms/journal/v4/n2/full/ncomms2459.html
http://www.csm.uni-mainz.de/eng/242.php

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>