Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz and Freiburg immunologists discover immune system precursor cells that fight infection

26.05.2014

Evidence presented of the existence of a previously unknown form of lymphocyte that protects against intracellular infection

The innate immune system recognizes infectious agents such as viruses and bacteria. A group of lymphocytes known as "innate lymphoid cells" or ILCs plays a central role in the defense of the human body against infective agents.

Professor Andreas Diefenbach of the Research Center Immunology at the Mainz University Medical Center, working in collaboration with scientists at the University of Freiburg, has discovered previously unidentified ILCs that are able to protect epithelial surfaces, such as those of the intestinal mucosa, against infection.

The results provide important additional insights into how the immune system functions. It is also possible that these findings, recently published in the international journal Cell, could result in the development of new vaccination strategies that would prevent intracellular infections.

... more about:
»Hygiene »ILC »discover »immune »infections »unknown

ILCs are among the most important weapons of the innate immune system and help it to fight infections and prevent the development of cancer. However, ILCs are not only of critical importance when it comes to preventing infections. They also have important functions in non-immunological processes, such as organ homeostasis, i.e., the maintenance of the physiological functional status of vital organs.

Professor Andreas Diefenbach, Director of the Department of Medical Microbiology and Hygiene at the Mainz University Medical Center, has now identified a previously unrecognized ILC population. Specifically, he has been able to identify previously unknown precursor cells from which all types of ILCs may originate and to describe a new ILC subgroup called type 1 ILCs.

"The fact that we have found the potential precursor cell for all ILCs has opened up completely new horizons for research in the field of immunology. We now have a realistic chance of identifying the signals controlling differentiation of such precursor cells into each of the various ILC types," said Diefenbach.

"If we understand how distinct types of ILCs are involved in the development of inflammatory bowel diseases and autoimmune disorders, we may be able to precisely suppress this unwanted programming of ILCs in the future." Diefenbach succeeded in detecting the unknown ILCs and the precursor cell at the molecular genetic level with the aid of fluorescent proteins.

"A healthy immune system is the key to preventing illnesses. So it is all the more important for us to obtain a comprehensive understanding of how the immune system operates. With this discovery, Professor Andreas Diefenbach and his team have made additional important progress in understanding the immune system in all its facets," stated the Chief Scientific Officer of the Mainz University Medical Center, Professor Ulrich Förstermann.

Further information:
Professor Dr. Andreas Diefenbach
Department of Medical Microbiology and Hygiene
Mainz University Medical Center
phone +49 6131 17-9363
fax 06131 17-9021
e-mail: andreas.diefenbach@uni-mainz.de

Press contact:
Oliver Kreft
Press and Public Relations
Mainz University Medical Center
phone +49 6131 17-7424
fax +49 6131 17-3496
e-mail: pr@unimedizin-mainz.de

About the University Medical Center of Johannes Gutenberg University Mainz
The University Medical Center of Johannes Gutenberg University Mainz is the only facility of its kind in Rhineland-Palatinate. It consists of more than 60 clinics, institutes, and departments. Research and teaching are inextricably linked with medical treatment. Approximately 3,500 students of medicine and dentistry are trained in Mainz on a continuous basis. More information can be found at http://www.unimedizin-mainz.de/index.php?L=1

Weitere Informationen:

http://www.uni-mainz.de/presse/17302_ENG_HTML.php - press release ;
http://www.sciencedirect.com/science/article/pii/S009286741400405X - abstract

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Hygiene ILC discover immune infections unknown

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>