Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz and Freiburg immunologists discover immune system precursor cells that fight infection

26.05.2014

Evidence presented of the existence of a previously unknown form of lymphocyte that protects against intracellular infection

The innate immune system recognizes infectious agents such as viruses and bacteria. A group of lymphocytes known as "innate lymphoid cells" or ILCs plays a central role in the defense of the human body against infective agents.

Professor Andreas Diefenbach of the Research Center Immunology at the Mainz University Medical Center, working in collaboration with scientists at the University of Freiburg, has discovered previously unidentified ILCs that are able to protect epithelial surfaces, such as those of the intestinal mucosa, against infection.

The results provide important additional insights into how the immune system functions. It is also possible that these findings, recently published in the international journal Cell, could result in the development of new vaccination strategies that would prevent intracellular infections.

... more about:
»Hygiene »ILC »discover »immune »infections »unknown

ILCs are among the most important weapons of the innate immune system and help it to fight infections and prevent the development of cancer. However, ILCs are not only of critical importance when it comes to preventing infections. They also have important functions in non-immunological processes, such as organ homeostasis, i.e., the maintenance of the physiological functional status of vital organs.

Professor Andreas Diefenbach, Director of the Department of Medical Microbiology and Hygiene at the Mainz University Medical Center, has now identified a previously unrecognized ILC population. Specifically, he has been able to identify previously unknown precursor cells from which all types of ILCs may originate and to describe a new ILC subgroup called type 1 ILCs.

"The fact that we have found the potential precursor cell for all ILCs has opened up completely new horizons for research in the field of immunology. We now have a realistic chance of identifying the signals controlling differentiation of such precursor cells into each of the various ILC types," said Diefenbach.

"If we understand how distinct types of ILCs are involved in the development of inflammatory bowel diseases and autoimmune disorders, we may be able to precisely suppress this unwanted programming of ILCs in the future." Diefenbach succeeded in detecting the unknown ILCs and the precursor cell at the molecular genetic level with the aid of fluorescent proteins.

"A healthy immune system is the key to preventing illnesses. So it is all the more important for us to obtain a comprehensive understanding of how the immune system operates. With this discovery, Professor Andreas Diefenbach and his team have made additional important progress in understanding the immune system in all its facets," stated the Chief Scientific Officer of the Mainz University Medical Center, Professor Ulrich Förstermann.

Further information:
Professor Dr. Andreas Diefenbach
Department of Medical Microbiology and Hygiene
Mainz University Medical Center
phone +49 6131 17-9363
fax 06131 17-9021
e-mail: andreas.diefenbach@uni-mainz.de

Press contact:
Oliver Kreft
Press and Public Relations
Mainz University Medical Center
phone +49 6131 17-7424
fax +49 6131 17-3496
e-mail: pr@unimedizin-mainz.de

About the University Medical Center of Johannes Gutenberg University Mainz
The University Medical Center of Johannes Gutenberg University Mainz is the only facility of its kind in Rhineland-Palatinate. It consists of more than 60 clinics, institutes, and departments. Research and teaching are inextricably linked with medical treatment. Approximately 3,500 students of medicine and dentistry are trained in Mainz on a continuous basis. More information can be found at http://www.unimedizin-mainz.de/index.php?L=1

Weitere Informationen:

http://www.uni-mainz.de/presse/17302_ENG_HTML.php - press release ;
http://www.sciencedirect.com/science/article/pii/S009286741400405X - abstract

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Hygiene ILC discover immune infections unknown

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>