Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic sensors attract attention

15.06.2009
Chemical-induced switching of polymer magnetism achieved at room temperature

When we smell an aroma or taste a flavor, we convert a chemical stimulus—adsorption of a particular molecule—into an information signal. Researchers are seeking to reproduce such interactions, in a simplified form, to develop new types of chemical sensors for practical and safety applications.

One approach is to use materials known as porous coordination polymers. Consisting of an ordered framework of inorganic metals linked together through carbon-based connectors, these polymers are extremely flexible, allowing large amounts of gas molecules to be adsorbed within the pores. Moreover, adsorption of guest molecules can alter the physical properties of the material.

Now, an international team of researchers has developed a route to detect adsorption through reversible chemo-switching of the magnetic properties of a porous coordination polymer1. According to lead author Masaaki Ohba, a guest researcher at the RIKEN SPring-8 Center and an associate professor at Kyoto University, because the chemo-switching occurs at room temperature, this polymer can be developed into new environmentally responsive materials.

In the team’s polymer, iron and platinum atoms are joined into a regular cubic framework through a cyclic carbon–nitrogen molecule called pyrazine and cyanide connection units. The spin state of the iron atoms—the number of unpaired electrons that determine magnetism—is dependent upon their proximity to the organic connectors.

“The spin state directly relates to the bond distance between iron and the organic connectors,” explains Ohba. “A short bond distance stabilizes the low-spin state, while a long bond distance stabilizes the high-spin state.”

Ohba and colleagues found that adsorption of certain molecules into the porous polymer altered the bond distances between iron and the organic connectors, setting off a switching of the magnetic spin state. When the polymer is initially in the low-spin, or diamagnetic, state, adsorption of gases such as benzene, water, and alcohols causes expansion of the polymer framework—and a switch to the high-spin, or paramagnetic, state.

In contrast, adsorption of carbon disulfide (CS2) gas by a polymer in the high-spin state shrinks the framework, and switches the magnetism to the low-spin state. Even after guest molecules are removed, the polymer retains its magnetic state—a form of non-volatile molecular memory.

“These porous coordination polymers combine properties such as gas adsorption and storage with the physical properties incorporated in their frameworks,” says Ohba. “They can be processed into nanoscale particles or films for applications such as chemical sensors and molecular memories.”

Ohba, M., Yoneda, K., Agusti, G., Muñoz, M.C., Gaspar, A.B., Real, J.A., Yamasaki, M., Ando, H., Nakao, Y., Sakaki, S. & Kitagawa, S. Bidirectional chemo-switching of spin state in a microporous framework. Angewandte Chemie International Edition published online, 17 Mar 2009 (doi: 10.1002/anie.200806039).

The corresponding authors for this highlight are based at the Department of Synthetic Chemistry and Biological Chemistry, Kyoto University (Ohba) and the RIKEN Photon Science Research Division, Quantum Order Research Group, Spatial Order Research Team (Kitagawa)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/726/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>