Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With Magnetic Nanoparticles, Scientists Remotely Control Neurons and Animal Behavior

07.07.2010
Research could lead to remote stimulation of cells to treat cancer or diabetes

Clusters of heated, magnetic nanoparticles targeted to cell membranes can remotely control ion channels, neurons and even animal behavior, according to a paper published by University at Buffalo physicists in Nature Nanotechnology.

The research could have broad application, potentially resulting in innovative cancer treatments that remotely manipulate selected proteins or cells in specific tissues, or improved diabetes therapies that remotely stimulate pancreatic cells to release insulin.

The work also could be applied to the development of new therapies for some neurological disorders, which result from insufficient neuro-stimulation.

"By developing a method that allows us to use magnetic fields to stimulate cells both in vitro and in vivo, this research will help us unravel the signaling networks that control animal behavior," says Arnd Pralle, PhD, assistant professor of physics in the UB College of Arts and Sciences and senior/corresponding author on the paper.

The UB researchers demonstrated that their method could open calcium ion channels, activate neurons in cell culture and even manipulate the movements of the tiny nematode, C. elegans.

"We targeted the nanoparticles near what is the 'mouth' of the worms, called the amphid," explains Pralle. "You can see in the video that the worms are crawling around; once we turn on the magnetic field, which heats up the nanoparticles to 34 degrees Celsius, most of the worms reverse course. We could use this method to make them go back and forth. Now we need to find out which other behaviors can be controlled this way." [The video is available by clicking on the "watch video" link above.]

The worms reversed course once their temperature reached 34 degrees Celsius, Pralle says, the same threshold that in nature provokes an avoidance response. That's evidence, he says, that the approach could be adapted to whole-animal studies on innovative new pharmaceuticals.

The method the UB team developed involves heating nanoparticles in a cell membrane by exposing them to a radiofrequency magnetic field; the heat then results in stimulating the cell.

"We have developed a tool to heat nanoparticles and then measure their temperature," says Pralle, noting that not much is known about heat conduction in tissue at the nanoscale.

"Our method is important because it allows us to only heat up the cell membrane. We didn't want to kill the cell," he said. "While the membrane outside the cell heats up, there is no temperature change in the cell."

Measuring just six nanometers, the particles can easily diffuse between cells. The magnetic field is comparable to what is employed in magnetic resonance imaging. And the method's ability to activate cells uniformly across a large area indicates that it also will be feasible to use it in in vivo whole body applications, the scientists report.

In the same paper, the UB scientists also report their development of a fluorescent probe to measure that the nanoparticles were heated to 34 degrees Celsius.

"The fluorescence intensity indicates the change in temperature," says Pralle, "it's kind of a nanoscale thermometer and could allow scientists to more easily measure temperature changes at the nanoscale."

Pralle and his co-authors are active in the Molecular Recognition in Biological Systems and Bioinformatics and the Integrated Nanostructure Systems strategic strengths, identified by the UB 2020 strategic planning process.

In addition to Pralle, who has an adjunct position in the Department of Physiology and Biophysics in UB's School of Medicine and Biomedical Sciences, co-authors are Heng Huang and Savas Delikanli, both doctoral students in the UB Department of Physics, Hao Zeng, PhD, associate professor in the physics department, and Denise M. Ferkey, PhD, assistant professor in the UB Department of Biological Sciences.

The research was supported by the National Science Foundation and the UB 2020 Interdisciplinary Research Development Fund.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>