Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnetic Attraction Of Stem Cells To The Injured Heart Creates More Potent Treatment For Heart Attack

Researchers at the Cedars-Sinai Heart Institute have found in animals that infusing cardiac-derived stem cells with micro-size particles of iron and then using a magnet to guide those stem cells to the area of the heart damaged in a heart attack boosts the heart’s retention of those cells and could increase the therapeutic benefit of stem cell therapy for heart disease.

The study is published today online by Circulation Research, a scientific journal of the American Heart Association. The study also will appear in the journal’s May 28th printed edition.

“Stem cell therapies show great promise as a treatment for heart injuries, but 24 hours after infusion, we found that less than 10 percent of the stem cells remain in the injured area,” said Eduardo Marbán, M.D., director of the Cedars-Sinai Heart Institute. “Once injected into a patient’s artery, many stem cells are lost due to the combination of tissue blood flow, which can wash out stem cells, and cardiac contraction, which can squeeze out stem cells. We needed to find a way to guide more of the cells directly to the area of the heart that we want to heal.”

Marbán’s team, including Ke Cheng, Ph.D. and other researchers, then began a new animal investigation, loading cardiac stem cells with micro-size iron particles. The iron-loaded cells were then injected into rats with a heart attack. When a toy magnet was placed externally above the heart and close to the damaged heart muscle, the stem cells clustered at the site of injury, retention of cells in the heart tripled, and the injected cells went on to heal the heart more effectively.

“Tissue viability is enhanced and heart function is greater with magnetic targeting,” said Marbán, who holds the Mark Siegel Family Foundation Chair at the Cedars-Sinai Heart Institute and directs Cedars-Sinai’s Board of Governors Heart Stem Cell Center. “This remarkably simple method could easily be coupled with current stem cell treatments to enhance their effectiveness.”

To read the complete study, visit

In the future, this finding in the animal model may build on the ongoing, groundbreaking clinical trial led by Raj Makkar, M.D., director of interventional cardiology for the Cedars-Sinai Heart Institute. In the clinical trial, which is based on Marbán’s research, heart attack patients undergo two minimally-invasive procedures in an effort to repair and re-grow healthy muscle in a heart injured by a heart attack. First, a biopsy of each patient’s own heart tissue is used to grow specialized heart stem cells. About a month later, the multiplied stem cells are then injected back into the patient’s heart via a coronary artery.

The two-step procedure was completed on the first patient in June 2009. Complete results are expected in early-2011.

Recently, Marbán received a $5.5 million grant from the California Institute for Regenerative Medicine to continue developing cardiac stem cell therapies.

The Cedars-Sinai Heart Institute is internationally recognized for outstanding heart care built on decades of innovation and leading-edge research. From cardiac imaging and advanced diagnostics to surgical repair of complex heart problems to the training of the heart specialists of tomorrow and research that is deepening medical knowledge and practice, the Cedars-Sinai Heart Institute is known around the world for excellence and innovations.

Marbán invented the methods used to grow and expand stem cells from heart biopsies. Marbán filed patents regarding those innovations which are licensed by Capricor, Inc. Marbán and his wife, Linda Marban, Ph.D. are both founders of Capricor, Inc. Dr. Eduardo Marban serves on its Board of Directors, and owns equity in the company. Dr. Linda Marban serves as a consultant to Capricor.

Sally Stewart | Cedars-Sinai Heart Institute
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>