Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Attraction Of Stem Cells To The Injured Heart Creates More Potent Treatment For Heart Attack

09.04.2010
Researchers at the Cedars-Sinai Heart Institute have found in animals that infusing cardiac-derived stem cells with micro-size particles of iron and then using a magnet to guide those stem cells to the area of the heart damaged in a heart attack boosts the heart’s retention of those cells and could increase the therapeutic benefit of stem cell therapy for heart disease.

The study is published today online by Circulation Research, a scientific journal of the American Heart Association. The study also will appear in the journal’s May 28th printed edition.

“Stem cell therapies show great promise as a treatment for heart injuries, but 24 hours after infusion, we found that less than 10 percent of the stem cells remain in the injured area,” said Eduardo Marbán, M.D., director of the Cedars-Sinai Heart Institute. “Once injected into a patient’s artery, many stem cells are lost due to the combination of tissue blood flow, which can wash out stem cells, and cardiac contraction, which can squeeze out stem cells. We needed to find a way to guide more of the cells directly to the area of the heart that we want to heal.”

Marbán’s team, including Ke Cheng, Ph.D. and other researchers, then began a new animal investigation, loading cardiac stem cells with micro-size iron particles. The iron-loaded cells were then injected into rats with a heart attack. When a toy magnet was placed externally above the heart and close to the damaged heart muscle, the stem cells clustered at the site of injury, retention of cells in the heart tripled, and the injected cells went on to heal the heart more effectively.

“Tissue viability is enhanced and heart function is greater with magnetic targeting,” said Marbán, who holds the Mark Siegel Family Foundation Chair at the Cedars-Sinai Heart Institute and directs Cedars-Sinai’s Board of Governors Heart Stem Cell Center. “This remarkably simple method could easily be coupled with current stem cell treatments to enhance their effectiveness.”

To read the complete study, visit www.circres.ahajournals.org.

In the future, this finding in the animal model may build on the ongoing, groundbreaking clinical trial led by Raj Makkar, M.D., director of interventional cardiology for the Cedars-Sinai Heart Institute. In the clinical trial, which is based on Marbán’s research, heart attack patients undergo two minimally-invasive procedures in an effort to repair and re-grow healthy muscle in a heart injured by a heart attack. First, a biopsy of each patient’s own heart tissue is used to grow specialized heart stem cells. About a month later, the multiplied stem cells are then injected back into the patient’s heart via a coronary artery.

The two-step procedure was completed on the first patient in June 2009. Complete results are expected in early-2011.

Recently, Marbán received a $5.5 million grant from the California Institute for Regenerative Medicine to continue developing cardiac stem cell therapies.

The Cedars-Sinai Heart Institute is internationally recognized for outstanding heart care built on decades of innovation and leading-edge research. From cardiac imaging and advanced diagnostics to surgical repair of complex heart problems to the training of the heart specialists of tomorrow and research that is deepening medical knowledge and practice, the Cedars-Sinai Heart Institute is known around the world for excellence and innovations.

Marbán invented the methods used to grow and expand stem cells from heart biopsies. Marbán filed patents regarding those innovations which are licensed by Capricor, Inc. Marbán and his wife, Linda Marban, Ph.D. are both founders of Capricor, Inc. Dr. Eduardo Marban serves on its Board of Directors, and owns equity in the company. Dr. Linda Marban serves as a consultant to Capricor.

Sally Stewart | Cedars-Sinai Heart Institute
Further information:
http://www.cshs.org

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>