Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maelstrom quashes jumping genes

12.08.2008
Scientists have known for decades that certain genes (called transposons) can jump around the genome in an individual cell.

This activity can be dangerous, however, especially when it arises in cells that produce eggs and sperm. Such changes can threaten the offspring and the success of a species.

To ensure the integrity of these cells, nature developed a mechanism to quash this genetic scrambling, but how it works has remained a mystery. Now a team of scientists, including researchers at the Carnegie Institution's Department of Embryology, has identified a key protein that suppresses jumping genes in mouse sperm and found that the protein is vital to sperm formation.

"There is a tiny cell component that is unique to germ cells—the precursors to egg and sperm—called nuage, which means 'cloud' in French. Other researchers recently suspected that nuage was involved in keeping genes from jumping around in germ cells of the female fruit fly," explained Carnegie's Alex Bortvin, a senior author of the study. "But until this mouse study, no one knew for sure if it was involved in mammalian germ cells. To test if the mouse nuage played a similar role in mammals, we focused on a mouse protein called Maelstrom whose distant relative protein in the fruit fly was implicated in the other study."

In this research, published in the August 12th issue of Developmental Cell, the scientists first looked at where the protein Maelstrom resides during the formation of sperm. By marking the protein with a fluorescent antibody, they found that it was predominantly located in the cytoplasm, near the nucleus of the germ cell, at the nuage. To understand what Maelstrom does during the formation of sperm, the scientists created mutant mice that did not have the gene to produce the Maelstrom protein.

"We found that without the gene the process of meiosis was severely impaired," said Bortvin. "There was a profound defect in interactions of parental chromosomes, a process known as synapsis, leading to death of germ cells. This was clear evidence that the protein is vital to the formation of sperm."

The cause of such a defect became apparent when the researches looked at the behavior of transposons. "We observed massive flooding of the cytoplasm and nuclei of germ cells by transposons in the mutant mice," said Godfried van der Heijden, a Carnegie postdoctoral fellow and co-author. "This was the first time such a phenomenon was observed in germ cells of any species. Moreover, we found that the more transposons present in the nucleus, the more likely parental chromosomes would fail to locate each other during synapsis. Clearly, uncontrolled activity of jumping genes causes chromosomal mayhem in germ cells. Our results, coupled with work by Toshie Kai, a former Carnegie researcher studying the role of nuage in egg development in the fruit fly, suggest that nuage plays a central role in transposon silencing during the development of egg and sperm of many species from insects to mammals. "

The last surprise for the scientists was the observation that, contrary to the current view in the field, the silencing of jumping genes does not occur one time only in male germ cells during the mouse fetal development. Instead, every time a germline stem cell divides by meiosis to make sperm in adults the jumping genes are activated only to be silenced soon thereafter.

"This was a very puzzling finding," commented Bortvin. "Since the jumping genes are not silenced just once during the development of the fetus, but every time new sperm are produced during a mouse life, it's possible that germ cells may employ transposons in some fundamental way in male germline meiosis. This research is the first such clue of that possibility. We will be very busy over the next few years trying to crack this and other puzzles of Maelstrom's role in controlling meiosis and sperm production."

Alex Bortvin | EurekAlert!
Further information:
http://www.ciwemb.edu
http://www.CIW.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>