Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Macho Muscle Cells Force Their Way to Fusion

16.02.2011
Muscle, aptly enough, is born of cellular bullying, and not mutual consent.

In fact, according to new research from Johns Hopkins, the fusion of muscle cells is a power struggle that involves a smaller mobile antagonist that points at, pokes and finally pushes into its larger, stationary partner using a newly identified finger-like projection.

In a report published Nov. 29 in the Journal of Cell Biology, the researchers described experiments using fruit fly embryos to identify an invasive projection propelled by the rapid elongation of actin filaments as the main player in the cellular power struggle.

“We found that two muscle cells don’t simply open up their membranes and symmetrically fuse together,” says Elizabeth H. Chen, Ph.D., an assistant professor in the department of molecular biology and genetics, Johns Hopkins University School of Medicine. “Muscle cell fusion is actually an invasive battle.”

Before the new study, it was assumed that actin-enriched blobs sit atop the membranes of muscle cells preparing to fuse, equally dispersed. But by observing the accumulation of these blobs by genetics means, the team concluded that the actin structure is produced in only one of the two muscle cell types — the aggressive fusion-competent myoblast — and not in the stationary founder cell. Further analyses of the images, made with an electron microscope, showed the myoblast is extending multiple finger-like protrusions toward founder cells and ultimately forcing fusion with the founder cell by forming an open pore.

“Where we once saw only blobs of actin, now we could clearly see finger-like protrusions emanating from one cell into another,” Chen says. “That really helped us make the connection between this structure and invasive podosomes.”

The new work shows what is believed to be the first time that an invasive podosome-like structure has been found in developing tissue of any kind, Chen says, noting that although podosomes were discovered several decades ago in studies of cells growing in dishes, they have not been seen in a developing animal or implicated as a mechanism in cell fusion.

“It may be that this new understanding of muscle cell fusion will apply generally to other cells that fuse,” Chen says, “such as egg and sperm, for instance, as well as bone resorption cells and cells that are vital for immune responses.”

Muscle fusion is an integral part of muscle regeneration in genetic and acquired muscle diseases, and an accurate understanding of this basic cellular event could have important clinical applications in people with muscular dystrophy and other degenerative disorders, according to Chen.

The research was supported by the National Institutes of Health and the American Heart Association.

In addition to Elizabeth Chen, authors on the paper are Kristin L. Sens, Shiliang Zhang, Peng Jin, Rui Duan, Fengbao Luo and Lauren Parachini, all of Johns Hopkins; and Guofeng Zhang of the National Institute of Biomedical Imaging and Bioengineering.

On the Web:

Chen lab: http://www.jhu.edu/chenlab/elizabeth.html
Journal of Cell Biology: http://jcb.rupress.org/Multimedia (Chen describes a podosome-like structure that promotes myoblast fusion during muscle development): http://jcb.rupress.org/site/biobytes/biobytes_dec_13_2010.xhtml

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>