Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Macho Muscle Cells Force Their Way to Fusion

16.02.2011
Muscle, aptly enough, is born of cellular bullying, and not mutual consent.

In fact, according to new research from Johns Hopkins, the fusion of muscle cells is a power struggle that involves a smaller mobile antagonist that points at, pokes and finally pushes into its larger, stationary partner using a newly identified finger-like projection.

In a report published Nov. 29 in the Journal of Cell Biology, the researchers described experiments using fruit fly embryos to identify an invasive projection propelled by the rapid elongation of actin filaments as the main player in the cellular power struggle.

“We found that two muscle cells don’t simply open up their membranes and symmetrically fuse together,” says Elizabeth H. Chen, Ph.D., an assistant professor in the department of molecular biology and genetics, Johns Hopkins University School of Medicine. “Muscle cell fusion is actually an invasive battle.”

Before the new study, it was assumed that actin-enriched blobs sit atop the membranes of muscle cells preparing to fuse, equally dispersed. But by observing the accumulation of these blobs by genetics means, the team concluded that the actin structure is produced in only one of the two muscle cell types — the aggressive fusion-competent myoblast — and not in the stationary founder cell. Further analyses of the images, made with an electron microscope, showed the myoblast is extending multiple finger-like protrusions toward founder cells and ultimately forcing fusion with the founder cell by forming an open pore.

“Where we once saw only blobs of actin, now we could clearly see finger-like protrusions emanating from one cell into another,” Chen says. “That really helped us make the connection between this structure and invasive podosomes.”

The new work shows what is believed to be the first time that an invasive podosome-like structure has been found in developing tissue of any kind, Chen says, noting that although podosomes were discovered several decades ago in studies of cells growing in dishes, they have not been seen in a developing animal or implicated as a mechanism in cell fusion.

“It may be that this new understanding of muscle cell fusion will apply generally to other cells that fuse,” Chen says, “such as egg and sperm, for instance, as well as bone resorption cells and cells that are vital for immune responses.”

Muscle fusion is an integral part of muscle regeneration in genetic and acquired muscle diseases, and an accurate understanding of this basic cellular event could have important clinical applications in people with muscular dystrophy and other degenerative disorders, according to Chen.

The research was supported by the National Institutes of Health and the American Heart Association.

In addition to Elizabeth Chen, authors on the paper are Kristin L. Sens, Shiliang Zhang, Peng Jin, Rui Duan, Fengbao Luo and Lauren Parachini, all of Johns Hopkins; and Guofeng Zhang of the National Institute of Biomedical Imaging and Bioengineering.

On the Web:

Chen lab: http://www.jhu.edu/chenlab/elizabeth.html
Journal of Cell Biology: http://jcb.rupress.org/Multimedia (Chen describes a podosome-like structure that promotes myoblast fusion during muscle development): http://jcb.rupress.org/site/biobytes/biobytes_dec_13_2010.xhtml

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>