Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Macho Muscle Cells Force Their Way to Fusion

Muscle, aptly enough, is born of cellular bullying, and not mutual consent.

In fact, according to new research from Johns Hopkins, the fusion of muscle cells is a power struggle that involves a smaller mobile antagonist that points at, pokes and finally pushes into its larger, stationary partner using a newly identified finger-like projection.

In a report published Nov. 29 in the Journal of Cell Biology, the researchers described experiments using fruit fly embryos to identify an invasive projection propelled by the rapid elongation of actin filaments as the main player in the cellular power struggle.

“We found that two muscle cells don’t simply open up their membranes and symmetrically fuse together,” says Elizabeth H. Chen, Ph.D., an assistant professor in the department of molecular biology and genetics, Johns Hopkins University School of Medicine. “Muscle cell fusion is actually an invasive battle.”

Before the new study, it was assumed that actin-enriched blobs sit atop the membranes of muscle cells preparing to fuse, equally dispersed. But by observing the accumulation of these blobs by genetics means, the team concluded that the actin structure is produced in only one of the two muscle cell types — the aggressive fusion-competent myoblast — and not in the stationary founder cell. Further analyses of the images, made with an electron microscope, showed the myoblast is extending multiple finger-like protrusions toward founder cells and ultimately forcing fusion with the founder cell by forming an open pore.

“Where we once saw only blobs of actin, now we could clearly see finger-like protrusions emanating from one cell into another,” Chen says. “That really helped us make the connection between this structure and invasive podosomes.”

The new work shows what is believed to be the first time that an invasive podosome-like structure has been found in developing tissue of any kind, Chen says, noting that although podosomes were discovered several decades ago in studies of cells growing in dishes, they have not been seen in a developing animal or implicated as a mechanism in cell fusion.

“It may be that this new understanding of muscle cell fusion will apply generally to other cells that fuse,” Chen says, “such as egg and sperm, for instance, as well as bone resorption cells and cells that are vital for immune responses.”

Muscle fusion is an integral part of muscle regeneration in genetic and acquired muscle diseases, and an accurate understanding of this basic cellular event could have important clinical applications in people with muscular dystrophy and other degenerative disorders, according to Chen.

The research was supported by the National Institutes of Health and the American Heart Association.

In addition to Elizabeth Chen, authors on the paper are Kristin L. Sens, Shiliang Zhang, Peng Jin, Rui Duan, Fengbao Luo and Lauren Parachini, all of Johns Hopkins; and Guofeng Zhang of the National Institute of Biomedical Imaging and Bioengineering.

On the Web:

Chen lab:
Journal of Cell Biology: (Chen describes a podosome-like structure that promotes myoblast fusion during muscle development):

Maryalice Yakutchik | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>