Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Macavity wasn't there! How absent reoviruses kill cancer

Reoviruses are successfully being used in clinical trials to treat patients with cancer. Not only does the virus cause cancer cells to die, it also forces them to release pro-inflammatory chemokines and cytokines, which in turn causes the patient's immune system to attack the disease.

New research published by BioMed Central's open access journal Molecular Cancer shows that reovirus infected cancer cells secrete proteins which, even when isolated, result in the death of cancer cells.

Normal human cells are protected from reovirus infection by a protein called PKR. However a cellular signalling protein (Ras), which can block PKR activity, is abnormally activated in many types of cancer and provides a window of opportunity for reovirus infection. A multi-centre study, involving labs in the UK and America, collected growth media from reovirus infected melanoma cells.

The researchers showed that this media contained a range of small pro-inflammatory proteins, including an interleukin (IL-8) and Type 1 Interferon (INF-â), which recruited and activated white blood cells, specifically Natural Killer (NK) cells, dendritic cells (DC) and anti melanoma cytotoxic T cells (CTL).

Whilst the exact details behind this mode of action of cell signalling in response to viral infection are unclear, the release of cytokines was dependent on both 'inactive' PKR and a specific nuclear factor (NF-êâ). According to Prof Alan Melcher, from Leeds Institute of Molecular Medicine, "Bystander immune-mediated therapy may well be an important component in the treatment of cancer by reoviruses, and may have potential in treating cancer even in the absence of live virus."

Notes to Editors

1. Pro-inflammatory cytokine/chemokine production by reovirus treated melanoma cells is PKR/NF-êB mediated and supports innate and adaptive anti-tumour immune priming
Lynette Steele, Fiona Errington, Robin Prestwich, Elizabeth Ilett, Kevin Harrington, Hardev Pandha, Matt Coffey, Peter Selby, Richard Vile, Alan Melcher

Molecular Cancer (in press)

During embargo, article available

After embargo, article available at journal website

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at on the day of publication.

2. Molecular Cancer is an open access, peer-reviewed online journal interested in attracting high-quality original research and reviews that present or highlight significant advances in all areas of cancer and related biomedical science.

3. BioMed Central ( is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>