Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Lymphoma Treatment Shows Promise in Dogs

09.09.2010
Researchers have identified a new target for the treatment of lymphoma and are testing a potential new drug in pet dogs afflicted with the disease. At low doses, the compound, called S-PAC-1, arrested the growth of tumors in three of six dogs tested and induced partial remission in a fourth.

The results of the study, conducted by researchers at the University of Illinois, appear this month in the journal Cancer Research.

The new compound targets a cellular enzyme, procaspase-3, that when activated spurs a cascade of reactions that kill the cell, said chemistry professor Paul Hergenrother, who co-led the study with Tim Fan, a professor of veterinary clinical medicine.

Procaspase-3 offers an attractive target for cancer therapy, in part because cancers often interfere with normal cell death, and in part because many tumors – including those found in breast cancer, colon cancer, lung cancer, lymphoma, melanoma and liver cancer – contain high levels of procaspase-3.

“In my lab, we try to think of novel targets and novel approaches to cancer and other diseases,” Hergenrother said. “We think about the pathways that lead to those diseases, and we try to intervene at spots where others have not.”

The new compound is a modified version of a drug the researchers previously tested in mice and one dog.

The original compound, called PAC-1, was found to cause neurological excitation (neurotoxicity) even at low doses, the researchers said. Fan and his colleagues hypothesized that PAC-1, which works in part by grabbing zinc away from other molecules, was crossing the blood/brain barrier and latching onto zinc in the brain.

To prevent the compound from passing into the brain, Hergenrother’s laboratory made a derivative of PAC-1 with an added chemical group, called a sulfonamide. Tests in pet dogs with spontaneously occurring lymphoma showed that the new compound, S-PAC-1, stabilized or reduced the size of tumors in a majority of the animals, without neurotoxicity. Other side effects were mild, and recent adjustments to the treatment protocol have minimized or eliminated them, the researchers report.

If S-PAC-1 proves to be effective and safe as a lymphoma treatment and is approved by the FDA for use in dogs and/or humans (a process that could take years, the researchers emphasized), it will likely be added to the arsenal of drugs already used to combat lymphoma in both dogs and humans. It could be used in combination with other drugs as a first treatment option or serve as a second line of defense if the cancer returns.

Cancer drug combinations must be carefully tailored to avoid “overlapping toxicities,” Fan said, so a drug that effectively treats lymphoma with minimal side effects is very desirable.

The study in pet dogs is also unusual, Fan said, as most studies look at effects in mice and then, if a compound is promising and appears safe, it is tested in clinical trials in humans. The six dogs used in this study were veterinary patients that had spontaneously developed lymphoma, he said.

The similarities between human and canine lymphoma also add to the desirability of this approach, Hergenrother said.

“If you look at the genetic signatures of canine lymphoma and human lymphoma, they’re very, very similar and their response to therapy is very, very similar,” he said. “So there’s lots of reasons to be optimistic about a compound that has some effect in the canines, that it could have a similar effect in humans.”

This study was supported by funding from the National Cancer Institute at the National Institutes of Health. A new $525,000 grant from the NCI will support a clinical trial of S-PAC-1 in companion animal dogs. More information about the upcoming trial is available online: http://vetmed.illinois.edu/vth/MedServices/SmallAnimal/CancerCareClinic/CancerCareClinic.html

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>