Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lymph nodes with location memory

14.08.2013
Just where in the body immune cells reach maturity is important for their later function

Regulatory T cells (or “Tregs” for short) play a central role in the human immune system: They guide all of the other immune cells and make sure they are tolerant of the body’s own cells and harmless foreign substances.


A regulatory T cell (blue) in electronmicroscopic magnification, interacting with bacteria cells (green). © HZI / Rohde

How Tregs become Tregs in the first place has been only incompletely understood – until now. Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, along with their colleagues at the Hannover Medical School (MHH) have recently gleaned important new insights into the workings of these cells.

As it turns out, origin is key – greater numbers of Tregs are produced within certain lymph nodes than in others. The researchers are now publishing their insights in the scientific journal Mucosal Immunology.

Without regulatory T cells, the human defence system would not work properly. Defender cells would be fiercely fighting off even harmless foreign substances like the parts of certain kinds of food, for example, as the immune system would simply not be “tolerant” towards these harmless substances. This tolerance is mediated through the Tregs – they are “tolerogenic.”

They instruct other immune cells as to which intruders really do need to be fought off and which ones do not pose a threat. However, even regulatory T cells have to first acquire this unique skill. What we have known for some time now is that they receive their “training” inside lymph nodes. “Lymph nodes are basically the immune system’s meeting points if you will,” says Prof. Jochen Hühn, Head of Experimental Immunology at the HZI. “Here, different types of immune cells meet up and also encounter antigen.” An antigen is a structure the immune system is able to recognize like component parts of pathogens or foods.

The researchers compared the development of murine T cells obtained from lymph nodes from various locations in the body, like the liver, intestine, and skin. In the process, they learned that more Tregs capable of teaching other cells to be tolerant of food antigens are made inside lymph nodes of the liver and intestine – a property the lymph nodes maintained even when they were transplanted to the skin. Conversely, skin lymph nodes did not become more tolerogenic if transplanted to the intestine. The HZI scientists made these discoveries together with their colleagues from Prof. Oliver Pabst’s team at the MHH Institute of Immunology.

Based on their observations, the scientists deduced that lymph node location influences the maturation process of the cells they contain. “The cells retained their original skills for weeks following the transplant,” says Dr. Sascha Cording, one of the study’s first authors. “You might say lymph nodes have something like a location-specific memory.”

And this in spite of the fact that all the various types of blood cells within a lymph node, including the immune cells, are constantly replaced, which means the lymph nodes’ location memory must be encoded somewhere in its stroma.

Additional experiments allowed the scientists to probe just how lymph nodes obtain their memory: Following birth, both the supply of vitamin A and the intestinal bacterial microflora figure prominently into this process. Without these two influencing factors, the lymph nodes simply forget about their origin and lose their tolerogenic properties.

These findings about lymph node imprinting apply to humans as well: An inadequate supply of vitamin A after birth or meddling with the baby’s developing microflora through administration of antibiotics can interfere with the lymph nodes’ long-term memory. “At what age this process happens in humans we cannot as of yet pinpoint with any certainty,” says Hühn. “Whether we’re talking about the first few days, weeks, or months even, is difficult to surmise.” The next step will be identifying the potential repercussions interfering with early imprinting of the immune system. Down the line, things like food allergies or autoimmune diseases might be the result.

Original publication:
Sascha Cording, Benjamin Wahl, Devesha Kulkarni, Himprya Chopra, Jörn Pezoldt, Manuela Buettner, Annegret Dummer, Usri Hadis, Markus Heimesaat, Stefan Bereswill, Christine Falk, Ulrike Bode, Alf Hamann, Diana Fleissner, Jochen Huehn, Oliver Pabst
The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes

Mucosal Immunology, 2013, DOI: mi.2013.54

The Helmholtz Centre for Infection Research:
At the Helmholtz Centre for Infection Research (HZI) in Braunschweig, scientists are studying microbial virulence factors, host-pathogen interactions and immunity. The goal is to develop strategies for the diagnosis, prevention and therapy of human infectious diseases.

The department “Experimental Immunology“ at the HZI studies the development of immune cells and the cellular and molecular mechanisms that keep the immune system in balance. The scientists pay particular attention to the so-called regulatory T cells.

http://dx.doi.org/mi.2013.54 - Link to the original publication

Dr. Jan Grabowski | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de/en
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/lymph_nodes_with_location_memory/

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>