Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lymph node roundabout

29.06.2012
Researchers probe origin of optimized antibodies against infections

An organism's ability to make new antibodies and use them to optimize its own immune defenses is of central importance in the fight against pathogens. In the case of severe infections, the overall relative speed with which an immune response proceeds could mean the difference between life and death.


Division and selection of B cells inside germinal center of lymph node (computer simulation): Blue cells are in the process of dividing, while green cells are in the process of being selected. Grey cells are in the process of leaving the germinal center. HZI / Meyer-Hermann

An international team of scientists, among them systems immunologist Prof. Michael Meyer-Hermann of the Helmholtz Centre for Infection Research (HZI) of Braunschweig, Germany, has now found that asymmetric division of antibody-producing B cells speeds up the body's immune defenses.

Early on, one daughter cell starts making antibodies while the other works at refining its own antibodies. The researchers' findings are due to be published in the upcoming issue of the scientific journal, Cell Reports.

Our immune system produces antibodies as effective long-term weapons against viral or bacterial infections or following vaccination. Antibodies are made in lymph nodes by specialized cells called B lymphocytes. In certain areas within a lymph node - called germinal centers - these B cells first undergo a process of selection.

B cells proliferate, mutate, and thereby change their antibodies. The immune system then checks to make sure whether or not these mutations translate into an improved immune response. If so, the cells in question are selected. The final outcome is the production of optimized antibodies capable of efficiently attaching to a particular pathogen and thereby inactivating it or labeling it for subsequent destruction by phagocytic scavenger cells.

"As part of this evolutionary process, the immune system takes turns between chance mutations and best-candidate-selection," explains Michael Meyer-Hermann, Director of the HZI’s Department of Systems Immunology and professor of systems biology at the Technische Universität Braunschweig. "We are calling it the 'recycling hypothesis'." All of this allows the immune system to make sure that any antibody it produces is maximally effective against the particular pathogen it is looking to fight.

A year and a half ago, an international team of New York-based and HZI researchers described this process of antibody optimization experimentally in great detail. However, up until now, the nature of the trade-off relationship between mutation and selection was unclear. "There has been a lot of debate about whether or not one should picture this process as a one-way street or as a roundabout," says Meyer-Hermann. As the study's first author, Meyer-Hermann has analyzed his colleagues' experimental results mathematically and determined that the earlier measurements are only compatible with the idea of a roundabout.

At the beginning of the year, a team of British researchers from London showed that B cell division is asymmetric, resulting in production of unequal daughter cells. At first, the purpose of this kind of asymmetric cellular division seemed uncertain. Meyer-Hermann's analyses suggest that one of the two daughter cells leaves the germinal center and starts producing antibodies while the other stays behind and undergoes another round of mutation and selection inside the germinal center. The mathematical model illustrates the advantage of this type of set-up. While one fairly specialized daughter cell is already making antibodies, its clone, which can be further optimized in the next round, stays behind. Compared with symmetric division, in asymmetric division there is a tenfold increase in the number of antibodies produced. In addition, the cell that stays behind in the germinal center stores information regarding a successful antibody it has produced, and the optimization process thus concludes more quickly. "This kind of time-saving in antibody production can be a real life-saver in the case of a dangerous infection," explains Michael Meyer-Hermann.

At the Helmholtz Centre for Infection Research in Braunschweig, scientists study microbial virulence factors, host-pathogen interactions and immunity. The goal is to develop strategies for the diagnosis, prevention and therapy of human infectious diseases.

The Department of Systems Immunology of the HZI, led by Prof. Michael Meyer-Hermann, addresses the mathematical modelling of immunological questions. It is part of the Braunschweig Integrated Centre for Systems Biology (BRICS), a joint research centre for systems biology founded by the HZI and the Technische Universität Braunschweig.

Dr. Jan Grabowski | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>